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Abstract

A vertex|matching-partition (V|M) of a simple graph G is a span-
ning collection of vertices and independent edges of (G. Let vertex
v € V have weight w, and edge e € M have weight w,. Then
the weight of V|M is w(V|M) = [],cy wo - [[ocar we. Define the
vertex|matching-partition function of G as W(G) = 3.y, w(V|M).
In this paper we study this function when G is a path and a cycle.
We generate all orthogonal polynomials as vertex|matching-partition
functions of suitably labelled paths, and indicate how to find their
derivatives in some cases. Here Taylor’s Expansion is used and an
application to associated polynomials is given. We also give a combi-
natorial interpretation of coefficients in the case of multiplicative and
additive weights. Results are extended to the weighted cycle.



1 Vertex|Matching-Partition Function, 3-Term
Recurrence for Orthogonal Polynomials

In this paper we define a vertex|matching-partition and the vertex|matching-
partition function of a simple graph. The vertex|matching-partition function
of a path was briefly discussed without development in Viennot [7, pp. VI-
9], (see also Viennot [8]). Here we develop this idea further by showing
how to generate any orthogonal polynomial as the vertex|matching-partition
function of a suitably weighted path; many examples are given. We extend
our results to the vertex|matching-partition function of a weighted cycle.
Finally, we show how to generate derivatives of some orthogonal polynomials,
and consider an application to the associated polynomials of Van Assche [6].

Let G be a simple graph with vertices V(G) and edges E(G). A match-
ing M of G is a set of edges in F(G), no two of which are incident. For
a matching M of G, let V) = V denote the vertices of G which are not
incident to any edge in M. Call the pair V| M a vertex|matching-partition or
a vm-partition of G. For every v € V(@) and every vm-partition V|M of G,
either v € V' or v is incident to an edge in M which (with a slight abuse of
notation) we write as v € M, but not both. Call V' the vertez-set and M the
matching of the vm-partition V|M. Let Vj denote the empty vertex-set, and
My the empty matching.

Let v € V(G) have weight w,, and let e = (u,v) € E(G) have weight
We = W(yw)- Now define the weight of a vm-partition V'|M as

w(V|M) = va- H We, (1)

veV ee M

where products over Vj and My are 1.

Finally define the vm-partition function of G as:

W(G) =) w(V|M),

VM

where the summation is over all vm-partitions V|M of G.



Weighted Path P(n)

Let A and p be arbitrary variables, and let P(n) be the weighted path
on the n + 1 vertices {0,1,...,n}, see below. The vertex labels {0,1,...,n}
are shown below the path. The weights of the vertices and edges are shown
above the path. We call this Model 1.

Wy —
A pwen W wag W2 owes WS n=l W1,y Wn
0 1 2 3 n—1 n

Let P,, be the vm-partition function of P(n), i.e.,
P, =W(P(n)).
With P_; = p and Py = A we have,
Theorem 1.1  Forn > 1,
Pr = wnPn—1 + W10 Pr—2. (2)

Proof. Note that Py = W(P(0)) = XA and Py = W(P(1)) = Aw; + paw o 1)
Now, for n > 1, consider vertex n, the last vertex of P(n); it has weight w,,.
Let V|M be an arbitrary vm-partition of P(n), so either n € V or n € M.

If n € V then w, occurs as a factor of w(V|M). Upon factoring out wy,
we obtain the weight of a vm-partition of P(n — 1); conversely, given the
weight of any vm-partition of P(n — 1), its product with w,, gives the weight
of a vm-partition of P(n) which contains n in its vertex-set. This accounts
for the first term in the right-hand side of (2).

If n € M then wg,—1,) occurs as a factor in w(V|M) and, by a simi-
lar argument to above, the sum of the weights of all such vm-partitions is
W(n—1,n)Pn—2, the second term in the right-hand side of (2). N

Thus

P, = wnpn—1+w(n—1,n)73n—2

= E w(V|M)—|—E w(V|M),
V|M ViM
nev neM



where the first summation is over all vm-partitions of P(n) which contain
vertex n in its vertex-set, V; the second over all vm-partitions of P(n) which
contain n in its matching, M. We say that equation (2) comes from decom-
posing P, at vertex n.

Thus any sequence of polynomials which obey the 3-term recurrence (2)
can be obtained as the sequence of vm-partition functions of P(n); in par-
ticular orthogonal polynomials obey such a 3-term recurrence.

Example 1

Po=W(P(0)) =\

P1=W(P(1)) = lwy + prwo 1)

Py = W(P(2)) = Awiws + pwaw(o,1) + A 2)

Ps = W(P(3)) = Mwiwows+pawawsw o, 1)+ AW w1 2y AW W2 3)+HW (0, 1)W(2,3)-

For example P; comes from P(3), shown below

A pwen W wag W2 owes WS
ée— e 6 O
0 1 2 3

which has 5 vm-partitions:

vm-partition weight
° M,
01 2 3 0 )\wlwgwg
2 ; 0 1 Watlspiib(o.1)
[ J *—0 )\
03 1 1 2 W3W(1,2)
[ I *—o )\101'[[](273)
01 12 3
Vi o—o oo HW(0,1)W(2,3)




We now consider the two fundamental solutions to recurrence (2), f,, and
In-

The first fundamental solution, f,, of recurrence (2) is the solution with
initial values f_; = p =0 and fy = A = 1. Thus, from Model I, decomposing
P, at vertex 0, f, is the vm-partition function of

Wy, — w

Wiwag W2 weg W3 W,y TR (3)
e e— ' o
1 2 3 n—1 n

The second fundamental solution, g,, has g1 = p =1 and go = A = 0.
Thus, using Model I again, g, = w,) X the vm-partition function of the
path

Wy
W2 wpg W b W1,y O (4)
o— 0
2 3 n—1 n

Now, decomposing P,, at vertex 0, gives:

Theorem 1.2  Forn > 1,

Pr = AN + 11gn-
n

Remark 1.3 Let G be a graph with V(G) = {1,...,n} with vertex weights
w, for v € V(G), and edge weights w, for any edge e € E(G), and with
vm-partition function G.

(i) Suppose we replace any particular vertex weight w, with nw,, and
replace the weights w. on all edges €’ incident to v' with weight nw., then
the vm-partition function of this new graph is ngG.

(ii) Extending (i), suppose we replace every vertex weight w, with nw,, and
replace every edge weight w, with weight n?w,, then the vm-partition func-
tion of this graph is n"G.

As mentioned above, orthogonal polynomials obey a 3-term recurrence,
the next few examples involve well-known orthogonal polynomials.
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Example 2 Chebyshev polynomials. U_;(x) = 0 and Up(x) = 1.

Consider the recurrence below for n > 1,
Pn - prn—l - Pn—2- (5)

The Chebyshev polynomials of the second kind, U, (z), are the first funda-
mental solution of this recurrence, i.e., U,(z) = fu(x), (0 = U_1 = 0,\ =
Up = 1). Thus, comparing (5) with (2), then using (3) with w, = 2z for
n > 1 and wp-1,,) = —1 for n > 2, we see that U, (z) is the vm-partition
function of

2 N 2x N 2x 2x N 2x
1 1 1 (6)
1 2 3 n—1 n

Un(z) =) (=1)F (n ; k) (22)" 2% (See Riordan [4, p.59].)

The Chebyshev polynomials of the first kind, 7,,(z), are given by T,,(x) =
folz) +xgn(x), (0 =T-1 =2,A =Ty =1). Thus T,,(x) is the vm-partition
function of

Now decompose T, (x) at vertex 0 which has weight 1. This gives T,,(z) =
1- Un(x) + (—l’) . Un—l(x)’ i'e',

To(z) = Un(z) — 2 Up—1 (),

a well-known formula which involves both types of Chebyshev polynomials.
We derive the explicit formula for 7),(x) later in Example 7.



Example 3  Associated Legendre polynomials. p_1(z) = 1 and po(z) = 1.

Consider the recurrence below for n > 1,
Pn = (ZE’ -+ Q)Pn_l - Pn_g.

With 4 = p_; = 1 and A = pp = 1 we get the associated Legendre poly-
nomials, p,(z) = fu(x) + gn(z), see Riordan [4, p.66] . Thus, p,(z) is the
vm-partition function of

1 1 T+ 2 _1 T+ 2 _1 T+ 2 T+ 2 _1 :E+2(8)
— 0 —— o — 0 e — e
0 1 2 3 n—1 n

Un(5 + 1) is the vm-partition function of

T+ 2 _1 T+ 2 _1 T+ 2 T+ 2 _1 T+ 2
1 2 3 n—1 n

Decomposing the vm-partition function of (8), p,(z), at vertex 0 yields

pn(z) = U, (g + 1) —U,_1 (g + 1) ,

for n > 0, see Riordan [4, p.85] .
Example 4  Bessel polynomials. 6_;(z) = < and 6y(z) = 1.
Consider the recurrence below for n > 1,
P,=2n — )P, + 2*P,_o.
The Bessel polynomials, 6,,(x), are the solutions of this recurrence with p =

0_1 =1 and A =06y =1, i.e., 0,(x) = fu(z) + Lg,(x). Thus, 0,(x) is the
vm-partition function of

1 T 1 $2 3 $2 5 2n — 3 2 2n —1
00— 00— 0 o — 0
0 1 2 3 n—1 n



For the polynomials 6,,(z™') the model is

1 ZE_l 1 ZE_2 3 £E_2 5 . 2n — 3 I_Q 2n — 1
0 1 2 3 n—1 n

Let y,(z) = 2"0,(27') be the reciprocal Bessel polynomials (see Rior-
dan [4, p.77] ), then, modifying Remark 1.3(i) for the n vertices {1,...,n}
with n = z, we see that y,(z) is the vm-partition function of

1 1 x 1 3z 1 Sz (2n=3)z | 2n— 1w
0 1 2 3 n—1 n

By decomposing at vertex n we can derive the recurrence for y,, = y, (),
Yn = 2n — D)xyn1 + Y2,

with y_1 = yo = 1.

Example 5 Hermite polynomials. H_1(z) =0 and Hy(z) = 1.

Consider the recurrence below for n > 1,
Pn=2xPn_1 — (2n — 2)P,_a.

The Hermite polynomials, H,(x), are the first fundamental solution of this
recurrence, i.e., H,(x) = f.(z), (0w = H-y = 0,A\ = Hy = 1). Thus, using
(3), H,(x) is the vm-partition function of

2x _9 2x 4 2x 2x —2(n —1) 2x
1 2 3 n—1 n

2

Now the coefficient of "72¥ in the vm-partition function of the above

weighted path is
(=2 [ (9)
N, i€Ny,
where Ny, is a k-subset of {1,...,n — 1} in which no two elements are con-
secutive. Using (9) and the well-known formula:

L3]

H,(r) = kzo(—l)kw%w 20y,

NS



we have:

Corollary 1.4  Let Ny be a k-subset of {1,...,n — 1} in which no two
elements are consecutive. Then

n!

Y= s

Nk ZeNk
]
For example, if n = 7, kK = 3, then N3 can be any of the four subsets
{1,3,5}, {1,3,6}, {1,4,6}, or {2,4,6}. We have
7!

1-3-5—|—1-3-6—|—1-4-6—|—2-4-6:m&

Remark 1.5 Note the polynomials He,, which satisfy the recurrence He,, =
xHe,—1 —(n—1)He,_. This recurrence arises by dividing all of the above
weights by 2, and the relation H,(x) = 22 He, (zv/2) corresponds to Re-
mark 1.3(ii).

Example 6  ¢-Lommel polynomials. U_;(z;a,b) =0 and Up(x;a,b) = 1.

Consider the recurrence below for n > 1,
Po=2(1+aqg" Py — bg" *P,_s.

Then the first fundamental solution of this recurrence, f,(z), are the poly-
nomials U, (z;a, b) which appear in Al-Salam and Ismail [1].

For example Uy (z;a,b) = z (1+a) and Us(z;a,b) = 2 (1+a)(1+aq) —b.
Using (3), Uy, (x;a,b) is the vm-partition function of

z(l+a) _py 2(1+aq) z(l+ag"?) —bgn2 z(1+ag" ™)
1 2 n—1 n

Note that, as stated in Al-Salam and Ismail [1], Un(%; —q",q") are the
¢-Lommel polynomials of Ismail [5].

10



Weighted Cycle C(n)

The weighted path Model 1 generates P, = Af,, + pug, where f, is the
first fundamental solution of recurrence (2) and g, is the second fundamental

solution. Consider C'(n), the cycle with n vertices and n edges, weighted as
shown in Fig. 1. Call this Model II.

Figure 1. Weighted C(n)

Let C,, be the vm-partition function of C'(n), i.e.,
C, = W(C(n)).
Compare Theorem 1.2.
Theorem 1.6 Forn > 1,
Cn = Afn + tgn-1-

Proof. Let us decompose C, at vertex n. This yields 3 types of vm-
partitions of C'(n). (a) Those for which vertex n lies in the vertex set. From
Model IT above, and using (3) for f,—; and Remark 1.3 (i) on vertex 1 with
n = A, we see that these vm-partitions sum to w,, - Af,—1. (b) Those which
contain edge (n—1,n); these sum to w(,_1n) - Afn—2. Thus the vm-partitions
in (a) and (b) together sum to A(wy fn—1 + Wm-1,n)fn—2) = Afn. (c) Those
which contain edge (n,1). The sum of these is pug,_1, using (4).

The vm-partitions in (a), (b), and (c) partition the set of vm-partitions
of C(n), thus C,, = Af,, + pgn_1, as required. n

11



Example 7  Here we use Model II to generate T;,(x), the Chebyshev poly-
nomials of the first kind, and derive the explicit form for 7,,(z) as mentioned
in Example 2.

Let T, = A\f,, + ptgn—1, where f,, and g, are the fundamental solutions of
(5). The values Ty = 1 and 17 = x give A = pu = % e, T, = %fn + %gn_l.

Thus T,,(x) is the vm-partition function of the weighted cycle in Fig. 2.

vy %

Figure 2. Chebyshev weights

And, using Remark 1.3(i) at vertex 1 with n = 2, we see that 27, (x) is the
vm-partition function of the weighted cycle in Fig. 3.

Figure 3. Chebyshev weights
See Godsil [3, p. 144].

12



n

The number of k-matchings in C'(n) is m(";k), see Godsil [3, p. 14], so

2T, (z) = L J(—1)knfk (”;k) (22)"2*,

k=0

w3

Now decompose 27T, (x) at edge (n,1). A vm-partition of Fig. 3 which does
not contain edge (n, 1) is a vm-partition of the path (6), the sum of all such
vm-partitions is U, (x). Similarly, the sum of the vm-partitions of Fig. 3
which contain edge (n, 1) is —U,_2(x). Thus we get

2T, (x) = Up(z) — Up—a(x),

the well-known relation between the two types of Chebyshev polynomials,
see Riordan [4, p. 59 .

Example 8 Let t and u be arbitrary variables and consider the recurrence
P = (t + 1) Po_y — tuPp_o. (10)

Now A, = t" + u™ is a solution with A_; =t ' +u~! = t:’—u“ and Ay = 2.
Thus A, = 2f, + t:’—u“gn where f, and g, are the fundamental solutions to
(10), and we could use Model I to generate A,,. However, a better generation
is given by Model II: solving A,, = A\f,, + pgn—1 at n = 0 yields A = p = 1.
Thus, forn > 1, A,, = f, + gn_1 is the vm-partition function of the weighted
cycle in Fig. 4.

Figure 4. General Chebyshev weights

13



Similar to Example 7 we have,

) n n—=k
k=0

a ‘very old’ identity, see Riordan [4, p. 58] .

It seems worthwhile to mention that f, is the vm-partition function of

t+u —tu t+u —tu t+u t+u —tu t+u
1 2 3 n—1 n

and it is straightforward to prove by induction that f, = Y " ‘u' =
tn—i—l _ un—i—l
, which is valid for ¢t # u. Now the matchings polynomial of P,

is Z,EEZJO (";k) 2%, thus we have,

n+1

(—1)F (n ; k) (t + )" 2 (tu)k = it”‘i wt = u,

i=0 t—u

which is valid for t # u.

14



2 Derivatives of vm-Partition Functions

Vertex Weights containing z

Consider Model I in which each vertex weight has been multiplied by a
variable z. The other weight parameters A, w,, and w(,,) do not contain x.
This gives the weighted path P(n) as shown below. Call this Model I, the
case of multiplicative weights.

LWy, —
A pweay TV wag TW2 o oweg WS n=1 W1y TWn
.« o e .—.
0 1 2 3 n—1 n

Let P,.(z) = P, = W(P(n)) be the vm-partition function of this weighted
path, and let f,(lk) denote its k-th derivative with respect to x for k > 1.

Let Vi = {v1,...,v} be a set of k distinct vertices of P(n) and let
P(n) — Vj, be the graph obtained when these k vertices and their incident
edges are removed. The empty graph is the graph with no vertices and no
edges, let its vm-partition function be 1.

Before the main result in this section we need:

For each i = 1,...,m let S; be a weighted path. Let S =S;US,U---US,
be a disjoint union of m such paths. Let S* denote the path obtained from S
by joining the last vertex of S; to the first vertex of Ss, then the last vertex
of Sy to the first vertex of S3, ... , and so on. Let these m — 1 new edges all
have weight 0. Then, it is straightforward to prove,

Lemma 2.1

W(S) = W(SY).

Now the main result in this section. (See Godsil [3, p.2] for a similar
result with k£ = 1.)

15



Theorem 2.2  For any n > 0 and k > 1, the k-th derivative of P, is
given by

(k - k' Z’wm : ka F(n) - Vk)> (11)
where the sum is over every Vi = {v1,..., v}, a k-set of vertices of P(n).
Proof. For £ = 1 denote f;l) by f;, we use induction on n. First,

for n = 0, we have Py = z\ and so fg = A as the left-hand side of
(11); and the right-hand side equals MW(P(0) — {0}) = X also, because
P(0) — {0} is the empty graph. For n = 1 we have Py = a? wi + pw(o 1),
and fll = 2z\w; as the left-hand side of (11); the right-hand side equals
MV(P(1) — {0}) + wyW(P(1) — {1}) = Azw; + wiz\ = 2z w;, as required.

For n > 2, P, = 2w, Pp_1 + w(n_m)fn_g. So, using the product rule
for derivatives at the first line, the induction hypothesis at the second line,
and a modification of (2) to include the vm-partition function of a union of
2 paths (see Lemma 2.1 with m = 2) at the fourth line, we have

— — — —

Pn = ’LUnPn_l + l"wnpn_l + w(n—l,n)Pn—2>
n—1
- wnfn—l + 2wy, Z'LUUW(F(TL - 1) - {'U})
v=0

FWn1.7) Zwv —2) —{v})

= w,Pn_1 —I— rw,w, W(P(n —1) — {n —1})

+ Zwv{zwn Pn—1)—{v})+ w(n—l,n)W(F(n —2)—{v})}

n—2

= WPy + 2wwn 1 Prog + Y w,W(P(n) — {v})
= Z w,W —{v}),

as required. So (11) is true for k£ = 1.

16



Now we induct on k, so assume (11) is true for k, then

n

Y= l{:'Zwvl- cw, W(P(n) — Vi), and

fff“) = fﬁf)/ = k! Zwvl cw, W(P(n) — Vi)

Now the graph P(n) — V} is a disjoint union of paths, hence, from Lemma 2.1
and the above,

Py = k'Zwm---ka 3w W(P(n) = Vi) — {orsi})

V1 E Vi

Each set Vi U {vky1} will appear k + 1 times, so

,Piz o = k + 1 Z Wy * ** Wy (P(n) - Vk+1)>
Vig1
where the sum is over every Vi1 = {v1,..., 0541}, a (k+ 1)-set of vertices

of P(n); thus the induction goes through and (11) is true for all k > 1. =

From Taylor’s Expansion we have the following Corollaries, in which the
notation x = y means replace x by y, etc:

Corollary 2.3 The polynomials P, () satisfy the identity

n+1

(z+y) Z Zwm - w W(P(n) = V)
k=0

=y

Setting y = 0 gives

Corollary 2.4 The vm-partition function for P(n) with multiplicative weights
18
n+1

Z Zwvl- cw, W(P(n) — Vi)

=0

17



Thus, we have a combinatorial interpretation of the coefficients of z* in the
case of multiplicative weights.

A special case of Corollary 2.4 is given by

Po=Pu(1) =D > wy - w,W(P(n) - Vi)

k=0 Vj =0

which corresponds to arranging the terms of P, so that we sum over the
vm-partitions V|M where |V| =k for k=0,...n+ 1.

We now give an alternative derivation of the above formula in Corol-
lary 2.4.

A perfect matching of a graph with an even number of vertices is a set
of edges, no two of which are incident and which cover every vertex exactly
once. Clearly a path with an even number of vertices has a unique perfect
matching obtained by choosing its left-most edge and then every second edge.

We say that the graph P(n)— V; for any k = 0,...,n + 1 is composed of
k + 1 segments. Each segment is a path; we allow for an empty path if two
of the vertices in Vj, are adjacent in P(n), or if vertex 0 € V, then the first
segment in P(n) — V4 is the empty path, similarly if vertex n € V, then the
last segment in P(n) — Vj, is the empty path.

Now clearly W(P(n) — Vi)|s—o = 0 unless each of the k + 1 segments
in P(n) — Vj, is either the empty path or a path with an even number of
vertices, since in a path with an odd number of vertices every vm-partition
must contain at least one isolated vertex and hence every vm-partition has
weight 0. In this former case we have W(P(n) — Vi)|s=0 = [[cps We, where
M is the following set of edges: the first edge in the first non-empty segment
of P(n) — Vj, followed by every second edge in this segment, then the first
edge in the second non-empty segment of P(n)— V; followed by every second
edge in this segment,..., and so on. That is, M is the unique perfect matching
of P(n) — V.

Now, from (1), modified for the case of multiplicative weights, a typical
term in Py, (z) is [[yey #Vw, - [Tocps we, where we now see that M is the
unique perfect matching of P(n) — V. Hence, setting |V| = k we have:

18



n+1

fn(x) = ZZ H 2Fw, - H We

k=0 Vi veVy ecM
n+1
= Zxk Z Wy, * - Wy, W(P(n) — Vj)
k=0 Vie =0

as above.

The polynomials U,(z) from Example 2, H,(x) from Example 5, and
Un(z;a,b) from Example 6 can be generated by Model 1.

Example 9  Hy(x) is the vm-partition function of

So Hy(z) = 16z* — 4822 + 12 and its second derivative H{” (z) = 19222 — 96.

Vo = {v1, 02} P(4) -V, Wy, Wy, W(P(4) — V3)

{1,2} ¢ _g 2 2.2 (422 - 6)
o —0
3 4

{1,3} 2z 2z 2-2-4x?
2 4

{1,4} 20 _, 2x 2.2 (422 — 4)
o —0
2 3

{2,3} 2z 2z 2-2-4x?
1 4

{2,4} 2z 2z 2-2-4x?
1 3

{3,4} 20 _, 2 2.2 (42 — 2)
! 2 96x% — 48

But k = 2 so 2! - (9622 — 48) = 19222 — 96 = H.\? (x).

19



We have a similar result for Model I with vertex weights x — A on vertex 0
and x —w, on vertex v € {1,2,...,n}, where A\, w,, and w(,,) do not contain

x. Call this weighted path ﬁ(n) and let P, be its vm-partition function; it
is shown below. We call this Model I, the case of additive weights.

r— A HWw(o,1) Tr — Wy T — Wp-1 Wn—1,n) T — Wy
¢ ——0 [ EEEEE—

0 1 n—1 n

Example 10  Poisson-Charlier polynomials. P_;(z) = 0 and Fy(x) = 1.
Consider the recurrence below for n > 1,

Po=(@x—t—n+ 1Pt +tin —1)Py_s

Then the first fundamental solution of this recurrence are Ehe Poisson-Charlier
polynomials P, (z,t), which can be generated by Model I, shown below.

(x—=1t) 4 (z—t—1) (:E—t—(n—Q)) (n— 1)t (x—t—(n—1))

o — 0 .
1 2 n

Se

1

We have the following Theorem, the proof of which is similar to that of
Theorem 2.2.

Theorem 2.5 Foranyn > 0 and k > 1, the k-th derivative of P, is given
by
PE = k1Y W(P(n) — i),
k

where the sum is over every Vi, a k-set of vertices of }A’(n) [

and as for Theorem 2.2 we have the Corollaries:

Corollary 2.6 The polynomials ﬁn(z) satisfy the identity

n+1

(T +y) = Z ZW Vi)

20



and

Corollary 2.7 The vm-partition functionfor }A’(n) with additive weights is

Pa(z) =Y _a* > W(P(n) — Vi)
k=0 Vi =0

As before, this gives a combinatorial interpretation of the coefficients of x*
in the case of additive weights.

We observe that:

W(P(n) V)| =W(P(n) - Vi)

=0 r=—1

Finally, see Feinsilver, McSorley, and Schott [2] for an application of
Theorem 2.5 to Lommel polynomials.
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Segment Polynomials

Consider Model 1. For any 0 < ¢ < m < n let P(¢,m) denote the
weighted subpath of P(n) starting at vertex ¢ and ending at vertex m,

w w w Wy
Cower) CHY Wig ey U2 ML Win—1,m) UM
0 /+1 0+2 m—1 m
Now define

Pom = W(P(l,m))
to be the vm-partition function of P(¢, m).

Example 11
Starting with P(3) we have the weighted subpath P(1, 3):

Y wag M2 wpg W
1 2 3
which has 3 vm-partitions:
vm-partition weight
L M@
W Waw
12 3 12
*—o
W3W(1,2)
311 2
[ *—o
W1W(2
1 9 3 (2,3)

Thus 73173 = WiwWaws3 + W3W(1,2) + W1W(2,3)-

Note that Py, = P, for n > 0. We also define Py _; = P_; = p. Then,
with the starting conditions Pyy_o = 0 and Pyy—1 = 1, we have for m > 1,

PZ,m = wmpé,m—l + w(m—l,m)PZ,m—2-
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Example 12 With natural notation we see, from the weighted path (6)
in Example 2, that U, (z) = Up—ry1(x), for £ > 1, these are Chebyshev
segment polynomials of the second kind. Similarly, from the weighted path
(7) we have T () = Up—gs1 (), for £ > 1, the Chebyshev segment polyno-
mials of the first kind. We also have py., () = ppm—s1(x + 2), for £ > 1, the
associated Legendre segment polynomials.

For orthogonal polynomials satisfying the three-term recurrence

T Pu(T) = Angt Puy1(T) + bp po(T) + an pri(z)

with p_i(z) = 0, po(x) = 1, i.e., the first fundamental solution to the re-
currence, the " associated polynomials, P(ne)(x) are the first fundamental
solution to the recurrence

P00 (T) = Qnes1 Dint1,0) () + Dyt Dinyg) () + Angt Pin—1,0) ()

(see Van Assche [6], with our notation a slight variant). In other words,
the subscripts on the coefficients are shifted up ¢ units. This corresponds
exactly to moving up ¢ vertices along the path, namely our segment polyno-
mials. Thus we have a (new) combinatorial interpretation of the associated
polynomials.

Equation 2.10 of Theorem 1 of [6] gives the relation

n

P = 32 b () o 2. (12)

j=1 "

This is the case k =1 of our Theorem 2.2 which expands the first deriva-
tive of P, (x) in terms of segment polynomials. Explicitly, we have

P = Zvao,v—lpv—l—l,n = Zvav—lpv—l—l,n- (13)
v=0

v=0

Furthermore, our model gives formulas for 2"! and higher derivatives of P,
in terms of more complicated combinations of segment polynomials.
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Example 13  Note that equation (12) suggests the form of a convolution.
An example that illustrates this is given by the Gegenbauer polynomials,
CMx), with generating function

G(z,v;\) = (1 — 220 +0?)™ = ZU"C;L\(:B)
n=0
Differentiating both sides with respect to x gives
20\ Gz, v; A+ 1) =Y v"(C)(x))',
n=0

Or, for n > 1,
(Ca()) =22 CH (x),

Observe that the relation G(x,v; A 4+ pu) = G(x,v; \)G(z,v; 1) may be read
as the statement that the sequence {C)*#},5¢ is the convolution of the se-
quences {C2},>0 and {C*},>9. Now, the case u = 1 gives C2 = U, Cheby-
shev polynomials of the second kind. Thus,

(CR(@)) =20 G5 () = 22 ) Coy(7) Uja ()

holds in general. In particular, taking A = 1, recalling equation (12) to
the effect that the U, are their own associated/segment polynomials, we
have an exact correspondence with equations (12) and (13) for Chebyshev
polynomials of the second kind.
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Edge Weights containing =

Finally we consider derivatives with respect to variables on the edges of

Model I.

Consider Model I in which each weight has been multiplied by the variable
z. As before, other weight parameters do not contain z. Let Q(n) denote
this weighted path and let Q,, be its vm-partition function, see below.

w1 (%) w3 Wn—1 Wp,

A wpw) TW(1,2) TW(2,3) TW(n—1,n)

0 1 2 3 n—1 n

Let My = {e1,..., e} be a k-matching of Q(n), then we have the follow-
ing theorem, the proof of which is similar to the above proof of Theorem 2.2.

Theorem 2.8 For any n > 0 and k > 1, the k-th derivative of Q,, is
given by

QY =k we, - w WQ(n) — My),
My,
the sum is over every My = {ey, ..., ey}, a k-matching of Q(n). n

And Taylor’s Expansion gives results analogous to Corollaries 2.3 and 2.4.
Finally, proceeding as before, call the weighted path with edge weights
as shown below Q(n), and call its vm-partition function Q,,.

w w Wnp— w
A or—pwey N r—was P - weeam )
 ——— 0
0 1 2 n—1 n

Theorem 2.9 For any n > 0 and k > 1, the k-th derivative of @n 18
given by
QW = k! Y " W(Q(n) — My),

My,

where the sum is over every My, a k-matching of @(n) [

Similarly there are results analogous to Corollaries 2.6 and 2.7.
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