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Abstract

A finite simple graph is uniformly (t, r)-regular if it has at least t

vertices and the open neighbor set of each set of t of its vertices is of
cardinality r. If t > 1, such a graph is trivially uniformly (t, r)-regular
if either it is a matching (t = r) or r is the number of non-isolated
vertices in the graph. We prove the result stated in the title.

1 Uniform (t, r)-regularity

All graphs will be finite and simple, in this paper, and notation will largely
be as in [10]. If G and H are graphs, V (G) is the vertex set of G, G+H is the
disjoint union of G and H, and for a positive integer m, mG = G+· · ·+G (m
summands). If u ∈ V (G), NG(u) = {v ∈ V (G)|u and v are adjacent in G},
and if S ⊆ V (G), NG(S) =

⋃
u∈S NG(u), the open neighbor set of S in G.

The order of G will be denoted by n(G)(= |V (G)|), or just n, if G is the only
graph in the discussion.

G is uniformly (t, r)-regular if 1 ≤ t ≤ n and for each S ⊆ V (G) with
|S| = t, |NG(S)| = r. This property of graphs was introduced in [4] as
“(t, r)-regularity”; the problem with that terminology is that it is also used
for a seemingly similar but rather less exigent property, introduced in [3] and
written on in [2], [5], and [7]. In [6] the word “strong” plays the role we assign
to “uniform” here; we abandon that terminology because it misleadingly
suggests an analogy with strong regularity of graphs. There is a powerful
connection between the two when t = 2 (see [9]), but the analogy at the
definitional level is distant.



Uniform (1, r)-regularity is just plain r-regularity. When t > 1 there are
two easily found classes of uniformly (t, r)-regular graphs:

(i) G = mK2 for some m ≥ t/2, a matching. In this case, t = r.

(ii) r = n(G1), where G1 is the subgraph of G induced by the non-isolated
vertices of G, and t is “sufficiently large”. Indeed, as noted in [6], if
r = n(G1) > 0 and n(G) − δ(G1) + 1 ≤ t ≤ n(G) then G is uniformly
(t, r)-regular, but G is not uniformly (n(G) − δ(G1), r)-regular. And
if r = n(G1) = 0 then G = nK1 and is uniformly (t, 0)-regular for all
t = 1, . . . , n.

For t > 1, uniform (t, r)-regularity due to either condition (i) or (ii) will
be called trivial, and the big question (raised in [6]) is: are there non-trivially
uniformly (t, r)-regular graphs, and, if so, what are they?

This question has been satisfactorily answered for t = 2. Any “strongly
regular graph with λ = µ > 0”, that is, a regular graph G, say with degree
d > 0, not complete, for which there exists µ such that for any two distinct
u, v ∈ V (G), |NG(u) ∩ NG(v)| = µ, is non-trivially uniformly (2, 2d − µ)-
regular. There are infinitely many such graphs (see, e.g., [8]), and it has
recently been shown [9] that there are no other non-trivially uniformly (2, r)-
regular graphs besides these. Here we settle the question for t > 2. The
proof of the following theorem is postponed until section 3.

Theorem 1 If t > 2 then for no r does there exist a non-trivially uniformly
(t, r)-regular graph.

2 An excursion into designs

If n ≥ t > 0, an (n, t, λ)-design is a pair (V,B) where V is a set with n
elements (“points”) and B = [B(i)|i ∈ I] is an indexed collection of subsets of
V (“blocks”) such that for each T ⊆ V with |T | = t, |{i ∈ I|T ⊆ B(i)}| = λ.
(That is, any t points of V lie together in exactly λ blocks.) We require B to
be an indexed collection because we want to allow “repeated blocks”; that
is, it may be that B(i) = B(j) even though i 6= j. Also note that there is
no requirement that the blocks be of the same size. Given such a design, let
b = |I|, the number of blocks.

Fisher’s Inequality [1, Theorem 2.6, p.66] If (V,B) is an (n, 2, λ)-design
with λ > 0 and V not appearing as a block, then b ≥ n.
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Theorem 2 If t > 2, λ > 0, and (V,B) is an (n, t, λ)-design with V not
appearing as a block, then b ≥ n with equality if and only if B can be re-
indexed to be [V \{v}|v ∈ V ].

Proof. We go by induction on t, starting with t = 3. For each v ∈ V ,
let I(v) = {i ∈ I|v ∈ B(i)} and consider the derived design (V \{v},B′(v)),
where B′(v) = [B(i)\{v}|i ∈ I(v)]. Each derived design is an (n − 1, 2, λ)-
design (because t = 3) and V \{v} does not appear in B′(v) because V does
not appear in B. By Fisher’s inequality, b′(v) = |I(v)| ≥ n− 1. On the other
hand, b′(v) ≤ b.

If b = n − 1, then b′(v) = n − 1 = b, for every v ∈ V , so I(v) = I for
every v. But then v ∈ B(i) for every i ∈ I, and every v, so, not only does V
appear in B, it is equal to B(i) for each i, wildly contrary to hypothesis. So
b ≥ n, as asserted. Suppose that b = n. Then b′(v) = |I(v)| = n or n− 1 for
each v ∈ V –i.e., v is in every block of B or in every block but one.

On the other hand, each block of B is missing some element of V . Think
of a bipartite graph with bipartition V, I, with v ∈ V adjacent to i ∈ I if and
only if v /∈ B(i). Then each v ∈ V has degree ≤ 1 in this graph, and each
i ∈ I has degree ≥ 1, and |V | = n = b = |I|. Thus the bipartite graph is a
matching, and B, possibly after renaming, is [V \{v}|v ∈ V ].

Now suppose that t > 3. With I(v) and B′(v), v ∈ V , defined as above,
each derived design (V \{v},B′(v)) is an (n− 1, t− 1, λ)-design, with V \{v}
not among the blocks in B′(v). By the induction hypothesis, b ≥ b′(v) =
|B′(v)| ≥ n − 1 for each v ∈ V . From here the proof proceeds as in the case
t = 3.

3 Proof of Theorem 1

Lemma 1 If t > 1 and G is non-trivially uniformly (t, r)-regular, then G
has no isolated vertices.

Proof. Suppose that u is an isolated vertex of G. Let G1 be the subgraph
of G induced by the non-isolated vertices of G. Since G is non-trivial, 0 <
r < n(G1), and, therefore, t < n(G1). Let S be a (t−1)-subset of V (G1), and
T = S ∪ {u}; then |NG(T )| = |NG(S)| = r. Since r < n(G1), there is some
w ∈ V (G1)\NG(S), and, by the definition of G1, some v ∈ V (G1) adjacent
to w. But then |S ∪ {v}| = t while |NG(S ∪ {r})| ≥ r + 1, contradicting the
assumption that G is uniformly (t, r)-regular.
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The main idea that starts the proof of Theorem 1 is due to Khodkar
and Leach [8]. Suppose that G is non-trivially (t, r)-regular, t ≥ 3. For
v ∈ V (G), let B(v) = V (G)\NG(v), and B = [B(v)|v ∈ V (G)]. By the
Lemma, no v ∈ V (G) is isolated, so B(v) 6= V (G). Further, r < n (non-
triviality of G) and (V (G),B) is an (n, t, n− r)-design, with b = |V (G)| = n.
Since t ≥ 3, by Theorem 2, for each v ∈ V (G) there is a u ∈ V (G) such that
B(v) = V (G)\{u}. Thus G is a matching, and is thus trivially uniformly
(t, r)-regular, after all.
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