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Abstract

Let H be an r-uniform hypergraph of order p, and {Hp1, Hp2, . . .}
be a countable sequence of r-uniform hypergraphs with Hpn having
pn vertices. The sequence is H-removable if Hp1

∼= H and Hpn − S ∼=
Hp(n−1) where S is any vertex subset of Hpn that induces a copy of H .
This paper deals with the case H = Kr

p . It provides a construction
of hypergraphs with a high degree of symmetry; where for any such
hypergraph, all the ways of removing the vertices of any fixed number
of disjoint Kr

p ’s yields the same subgraph. The case r = 2 was studied
by the authors in [3]. This paper gives the generalization to r-uniform
hypergraphs for all r = 2, 3, . . ..

Keywords: clique, eulerian digraph, hypergraph, m-partite, Stirling
number
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1 The Case r = 2

We first briefly list the previous ideas in [3] and [4] concerning the case
r = 2. The same vocabulary and definitions will be needed in our subsequent
sections.

In general we follow the notation in [5]. In particular if W is a subset of
the vertices of a graph G, then G[W ] denotes the subgraph of G induced by
W . The digraphs and graphs we consider are loopless and without multiple
arcs or edges. We also use [p] = {1, . . . , p}.

Call a countable sequence of graphs {Gpn} = {Gp1, Gp2, . . .} Kp-removable
if it satisfies the following two properties:

P1: Gp1
∼= Kp

P2: Gpn−W ∼= Gp(n−1) for every n ≥ 2 and every vertex subset W ⊂ V (Gpn)
that induces a Kp in Gpn, i.e., Gpn

∼= Kp.

We often write G1 = G2 in place of G1
∼= G2.

Let ~D be a digraph of order p, with d+(u) = d−(u) for every vertex

u in V ( ~D). Then ~D is an eulerian digraph if ~D’s underlying ‘undirected’

graph is of one component, otherwise ~D is eulerian on each of its underlying
components. Let N+(i) denote the out-neighborhood of vertex i.

Consider a copy of Kp with vertices labelled {(1, 1), . . . , (p, 1)} = {(i, 1) | i ∈
[p]}; call these vertices vertices at level 1, and call this graph D1(Kp).
Now consider another copy of Kp with vertices labelled {(i, 2) | i ∈ [p]},
these are vertices at level 2. For any vertex (i, 2) join it to the vertices
{(i′, 1) | i′ ∈ N+(i)} at level 1, so we see that these edges are derived from

the digraph ~D. We call the graph so formed D2(Kp). Now consider a third
Kp with vertices labelled {(i, 3) | i ∈ [p]}, at level 3. Join any vertex (i, 3) to
vertices {(i′, 2) | i′ ∈ N+(i)} at level 2 and to vertices {(i′, 1) | i′ ∈ N+(i)} at
level 1; this is D3(Kp).

Now, for any n ≥ 1, consider the graph which has been constructed level
by level, up to n levels, according to the previous definition; call this graph
Dn(Kp) or simply Dn when p is clear. We say the digraph ~D generates the
sequence {Dn}. The vertices of Dn, V (Dn), are of the form (i, j) for every
i ∈ [p] and every 1 ≤ j ≤ n, where j is their level; and the edges are of two
types:

(i) fixed-level edges, say at level j

((i1, j), (i2, j)) is an edge for all i1, i2 ∈ [p] where i1 6= i2; and
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(ii) cross-level edges, for j > j′

((i, j), (i′, j′)) is an edge if and only if i′ ∈ N+(i).

For any fixed i ∈ [p], let Ii = {(i, 1), . . . , (i, n)} = {(i, j) | 1 ≤ j ≤ n} be
the set of vertices of Dn in ‘column i’. Then, because i 6∈ N+(i), i.e., because
~D doesn’t have loops, this is an independent set of vertices. Now let W be a
subset of V (Dn) that induces a p-clique; then each of the p independent sets
I1, . . . , Ip contain exactly one vertex from W .

Let W = {(1, v1), . . . , (p, vp)} be an arbitrary vertex subset in Dn with
exactly one vertex from each independent set Ii. Let W have vertices at
m different levels: `1, . . . , `m where `1 < · · · < `m. For 1 ≤ k ≤ m, let
Vk = {i | vi = `k} 6= ∅ be the set of first coordinates of all vertices of W at
level `k. Then the sets V1, . . . , Vm partition [p].

In Dn consider two levels of vertices, Vi and Vj with li < lj and let y ∈ Vi

and x ∈ Vj. Then if the edge e = xy is in the induced subgraph Dn[W ] of

Dn we call the arc (x, y) in our original generating digraph ~D a W -skew arc.

Hence a W -skew arc of ~D gives rise to edges in Dn which join different levels
of W .

Let (A,B) denote the set of arcs in D from A to B, i.e., all arcs (a, b)
with a ∈ A and b ∈ B.

Theorem 1.1 ([4]). With the above notation: a set W of vertices of Dn

with level-partition V1, V2, . . . , Vm, induces a p-clique iff the associated W -
skew arcs form a complete symmetric m-partite subdigraph in ~D. �

Theorem 1.2 ([4]). Let ~D be any eulerian digraph of order p. Then its
generated sequence of graphs {Dn} is Kp-removable. �
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2 The Hypergraph Construction

The ideas and results in Section 1 lead to the following extension to hyper-
graphs. A hypergraph consists of a collection of vertices and a collection of
edges; if the vertex set is V , then the edges are subsets of V . A hypergraph is
r-uniform if all of its edges have size r. The complete r-uniform hypergraph
of order p, denoted by Kr

p , is the hypergraph with vertex set V = [p] and

with edges all of the
(
p
r

)
r-subsets of V .

For a fixed pair p and r, with p ≥ r ≥ 2, let {Hr
pn} = {Hr

p1,H
r
p2,H

r
p3, . . .}

be a sequence of r-uniform hypergraphs where Hr
pn has pn vertices. Such a

sequence is called Kr
p-removable if it satisfies the following properties:

P1 Hr
p1

∼= Kr
p

P2 Hr
pn −Kr

p
∼= Hr

p(n−1) for every n ≥ 2 and for every (induced) Kr
p in Hr

pn.

For each pair p and r, with p ≥ r ≥ 2, we show the existence of Kr
p -

removable sequences.
Let (A1, . . . , Am) denote a partition of [p]. We define the complete m-

partite r-uniform hypergraph of order p, denoted Kr
|A1 |,...,|Am|, as follows: The

vertex set is [p], and an r-subset, Q, of [p] is an edge if and only if Q contains
at most r − 1 members from any class Aj. So, eg., Kr

n,n has 2n vertices and

(
n

1

)(
n

r − 1

)
+

(
n

2

)(
n

r − 2

)
+ · · · +

(
n

r − 1

)(
n

1

)
=

(
2n

r

)
− 2

(
n

r

)

edges. Notice that for r = 2 we have the usual K2
n,n, the complete bipartite

graph with n2 edges. The number of edges in Kr
|A1 |,...,|Am| is

e(Kr
|A1 |,...,|Am|) =

∑ (
|A1|
k1

)
· · ·

(
|Am|
km

)

where the sum is over all k1 + · · ·+km = r, with 0 ≤ kj < r for all 1 ≤ j ≤ m.
Motivated by Theorem 1.1 we now construct Kr

p -removable sequences,
{Hr

pn}, from each fixed partition (A1, . . . , Am) of [p].

4



With {Hr
pn} = {Hr

p1,H
r
p2, . . .} the construction is as follows:

1. Hr
p(m−1)

∼= (m − 1)Kr
p , i.e., we first start with m − 1 disjoint levelled

copies of Kr
p .

2. For n ≥ m, the graph Hr
pn is defined as follows. First, take n disjoint

levelled copies of Kr
p ; the notation for the vertices introduced at level

1, level 2, . . . , level n, is the same as in Section 1, eg., the copy of Kr
p at

level j has vertex set {(1, j), (2, j), . . . , (p, j)}. From the given partition
(A1, . . . , Am) of [p], to each Aj, 1 ≤ j ≤ m, we select a distinct level lAj ,
where 1 ≤ lAj ≤ n. We use (A1, . . . , Am) → (lA1, . . . , lAm) to denote
the selected levels. Notice that to the partition (A1, . . . , Am) there are
m!

(
n
m

)
such level (lA1 , . . . , lAm) selections.

To each fixed level selection (A1, . . . , Am) → (lA1, . . . , lAm) we identify
the set Aj with their corresponding vertices in level lAj . The iden-
tification is through the first coordinates of the vertices in lAj . For
example, if Aj = {x1, . . . , x|Aj|}, then we identify Aj with the vertices,

Ãj = {(x1, lAj), (x2, lAj), . . . , (x|Aj|, lAj )} in level lAj of Hr
pn. We then

have (A1, . . . , Am) ∼= (Ã1, . . . , Ãm) with |Ã1|+ · · ·+ |Ãm| = p, for each
of the m!

(
n
m

)
such (Ã1, . . . , Ãm)’s. We then add to the initial n disjoint

copies of Kr
p , all edges in

⋃
E(Kr

|Ã1 |,...,|Ãm|), where the union is over all

m!
(

n
m

)
such (Ã1, . . . , Ãm)’s. We call this graph Hr

pn, the hypergraph
generated by the partition (A1, . . . , Am).

We use the symbol gen(A1, . . . , Am)r to denote such a sequence {Hr
pn}. Notice

by the construction, from (A1, . . . , Am) and a chosen level-(Ã1, . . . , Ãm), the
vertices Ã1 ∪ Ã2 . . . ∪ Ãm in V (Hr

pn) induce a Kr
p . The other Kr

p ’s in Hr
pn

are ‘fixed-level’ cliques, i.e., the Kr
p introduced at each level 1, . . . , n. For

the vertex subsets Ii, as defined earlier, the construction yields edges which
contain at most one vertex from any ‘column i’. Hence Ii is an independent
set in Hr

pn. Also notice that each induced Kr
p contains exactly one vertex

from each Ii, 1 ≤ i ≤ p.
For r = 2, the connection to the digraph ~D in Theorem 1.2 is as follows:

Consider any complete m-partite graph G = K2
|A1 |,...,|Am|. Let ~D be the

digraph formed from G by replacing each edge xy in G with two arcs (x, y)

and (y, x). Then ~D is eulerian and it generates the K2
p -removable sequence

{Dn} as in Theorem 1.2. Suppose W induces a Kr
p in Hr

pn. Let the vertices
of W be {(i, wi) | 1 ≤ i ≤ p}. In the graph Hr

pn − W , the set Ii\{(i, wi)} is
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an independent set: call this the i-th independent set of Hr
pn − W . Now we

construct an isomorphism φ between the vertices of Hr
pn−W and the vertices

of Hr
p(n−1). Under φ, for a fixed i ∈ [p], the vertices in the i-th independent

set of Hr
pn −W , namely in the set Ii\{(i, wi)}, are mapped to the vertices in

the i-th independent set of Hr
p(n−1), namely to the set {(i, 1), . . . , (i, n− 1)},

as follows:

φ(i, j) =

{
(i, j − 1), for wi < j ≤ n

(i, j), for 1 ≤ j < wi.

In [3] it is shown that φ is an isomorphism. It is straightforward to show
that φ moves edges in Hr

pn − W to edges in Hr
p(n−1). We have:

Theorem 2.1. Let p ≥ r ≥ 2, and let (A1, . . . , Am) be any partition of
[p]. Then the sequence of hypergraphs gen(A1, . . . , Am)r is a Kr

p -removable
sequence. �

In the following let S(m, t) be the Stirling numbers of the second kind.
Notice, by the above construction of gen(A1, . . . , Am)r = {Hr

pn}, Hr
pn

contains essentially two types of induced Kr
p ’s, either fixed-level or cross-

level. The vertices of a Kr
p are either all at a fixed level, or are at exactly

m different levels. However, by the isomorphism φ, the removal of any one
of these two types of induced Kr

p ’s yields up to isomorphism the same sub-
hypergraph. So, the hypergraph construction gives the clique-symmetric
uniform hypergraph we were searching for that does not simply possess n
fixed-level type Kr

p ’s.
We remark that the gen(A1, . . . , Am)r construction can be slightly modi-

fied to also contain cross-level Kr
p ’s containing vertices from exactly t levels,

for all 2 ≤ t ≤ m − 1, as follows: The partition (A1, . . . , Am) of [p] is given.
For fixed t, 2 ≤ t ≤ m − 1, let (b1, . . . , bt) be a partition of [m]. From
(b1, . . . , bt) define the corresponding (B1, . . . , Bt) where Bj =

⋃
k∈bj

Ak. Notice

that (B1, . . . , Bt) is then a partition of [p]. Also notice that Kr
|B1|,...,|Bt| is a

complete t-partite sub-hypergraph of Kr
|A1 |,...,|Am|; and there are t!S(m, t) such

possible (b1, . . . , bt)’s, and hence t!S(m, t) such possible (B1, . . . , Bt)’s. We
remark that in general, for any complete m-partite graph, where m ≥ 3, there
are S(m, t) complete t-partite spanning subgraphs, where 2 ≤ t ≤ m− 1. As
before, each (B1, . . . , Bt) is assigned a level-selection (`B1, . . . , `Bt) producing
the corresponding (B̃1, . . . , B̃t). Now define Xt =

⋃
E(Kr

|B̃1|,...,|B̃t|
), where

the union is over all (B̃1, . . . , B̃t)’s. For the generalized construction from a
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given (A1, . . . , Am), we again start with n disjoint levelled Kr
p ’s. We add to

these the edges X2 ∪X3 · · · ∪Xm. It can be shown the isomorphism φ works
for this graph as well.

We call such a Kr
p -removable sequence {Hr

pn} as constructed above a t-
gen(A1, . . . , Am)r sequence. We note that for a given (B1, . . . , Bt) and its as-
sociated t!

(
n
t

)
corresponding (B̃1, . . . , B̃t)’s, that any permutation σ(B1, . . . , Bt)

of (B1, . . . , Bt), yields the same set of (B̃1, . . . , B̃t)’s as (B1, . . . , Bt) does.
Hence there are t!S(m, t)

(
n
t

)
such (B̃1, . . . , B̃t)’s, for each 2 ≤ t ≤ m. By the

construction every Kr
p in Hr

pn is in one-to-one correspondence with a fixed

(B̃1, . . . , B̃t). For the case t = 1, we interpret the (B̃1)’s as the beginning
n-level copies of Kr

p , so X1
∼= nKr

p . Hence we have a rather nice formula for
the number of Kr

p ’s in Hr
pn.

Theorem 2.2. Let (A1, . . . , Am) be a partition of [p]. For the Kr
p -removable

sequence t-gen(A1, . . . , Am)r = {Hr
pn}, the hypergraph Hr

pn has
m∑

t=1

t!S(m, t)
(
n
t

)

= nm Kr
p ’s. �

More directly, the value nm in Theorem 2.2 can be interpreted as follows:
From the given initial partition (A1, . . . , Am) of [p] we embed each Aj (by our
definition of Ãj) into any of the n levels, level 1, . . . , level n, thus creating
(B̃1, . . . , B̃t). Hence there are nm such embeddings. We remark also that,
by the defined construction, for each embedding (B̃1, . . . , B̃t) the vertices
B̃1 ∪ · · · ∪ B̃t induce a Kr

p in Hr
pn.

Example Let p = 5, r = 3, and (A1, A2, A3) be the partition of {1, 2, 3, 4, 5}
with A1 = {1, 2}, A2 = {3, 5}, and A3 = {4}. Consider the t-gen(A1, A2, A3)

3 =
{H3

5n} sequence. The graph for n = 3, i.e., H3
(5)(3) has 1!S(3, 1)

(
3
1

)
+2!S(3, 2)

(
3
2

)
+

3!S(3, 3)
(
3
3

)
= 27 induced K3

5 ’s. An example of one of these cliques for t = 2
is as follows: with (B1, B2) = (A1∪A3, A2), let (B1, B2) → (`B1, `B2) = (3, 2)
be a level-selection, giving (B̃1, B̃2). Then the vertices in V (H3

(5)(3)), namely,

B̃1 ∪ B̃2 = {(3, 1), (3, 2), (3, 4), (2, 3), (2, 5)}, induce a K3
5 in H3

(5)(3).

Kr
pn is the complete r-uniform hypergraph on pn vertices.

We end by showing, with the exception of {Kr
pn}, that for any Kr

p -
removable sequence {Hr

pn}, with p ≥ r ≥ 2, any member Hr
pn of the sequence

does not contain a Kr
p+1. So, e.g., for the case r = 2, the clique number

is always ω(H2
pn) = p for all n. We remark that the constructions given

in this paper produce ways to generate Kr
p -removable sequences, we do not
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claim these are the only Kr
p -removable sequences. However, our final theorem

applies to any Kr
p -removable sequence.

Theorem 2.3. Suppose the n-th member Hr
pn of a Kr

p-removable sequence
contains a Kr

p+1, then Hr
pn is Kr

pn.

Proof. Suppose that Hr
pn contains a Kr

p+1. Without loss of generality, we
assume V (Hr

pn) is partitioned into n Kr
p ’s: L1, L2, . . . , Ln, so that some vertex

y in L2 is such that L1 ∪{y} is an induced Kr
p+1 in Hr

pn. Let x be any vertex
in L1. Deleting the n− 1 Kr

p ’s: L3, L4, . . . , Ln, L1 + {y}−{x}, in this order,
we obtain L2 + {x} − {y}. Since {Hr

pn} is Kr
p -removable, L2 + {x} − {y} is

necessarily a Kr
p . Hence, L2 ∪ {x} is a Kr

p+1, and the union of L1 and L2

is Kr
2p. Consequently the removal of any n − 2 disjoint Kr

p ’s must produce
Kr

2p. This implies that the union of every two levels Li and Lj induce a Kr
2p;

therefore, Hr
pn is Kr

pn.

For other papers on graph sequences see Barefoot, Entringer, and Jackson
[1], and its bibliography; see also Duchet, Tuza, and Vestergaard [2].
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