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Abstract
Let {Gpn |n ≥ 1} = {Gp1, Gp2, Gp3, . . .} be a countable sequence of

simple graphs, where Gpn has pn vertices. This sequence is called Kp-
removable if Gp1 = Kp, and Gpn − Kp = Gp(n−1) for every n ≥ 2 and
for every Kp in Gpn. We give a general construction of such sequences.
We specialize to sequences in which each Gpn is regular; these are
called regular (Kp, λ)-removable sequences, λ is a fixed number, 0 ≤
λ ≤ p, referring to the fact that Gpn is (λ(n− 1) + p− 1)-regular. We
classify regular (Kp, 0)-, (Kp, p− 1)-, and (Kp, p)-removable sequences
as the sequences {nKp |n ≥ 1}, {Kp×n |n ≥ 1}, and {Kpn |n ≥ 1}
respectively. Regular sequences are also constructed using ‘levelled’
Cayley graphs, based on a finite group. Some examples are given.
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1 Notation, Kp-removable sequences of graphs,

main results

For p ≥ 1 and n ≥ 1 let Kp be the complete graph on p vertices, let nKp be n
disjoint copies of Kp, and let Kp×n = Kn,... ,n︸ ︷︷ ︸

p

, be the complete p -partite graph

on pn vertices. All graphs G are simple. In the graph G let G[{v1, . . . , vm}] =
G[v1, . . . , vm] denote the induced subgraph on vertices {v1, . . . , vm}. Suppose
that for some p vertices {v1, . . . , vp} in G we have G[v1, . . . , vp] = Kp, i.e.,
G[v1, . . . , vp] is an induced Kp, then G − Kp denotes the subgraph obtained
from G by deleting vertices vi and their incident edges, for every i = 1, . . . , p.
If two graphs G and G′ are isomorphic we write G ∼= G′. We often say that
two graphs are ‘equal’ (=) instead of ‘isomorphic’, and say ‘Kp’ instead of
‘induced Kp’.

For the countable sequence of graphs {Gpn |n ≥ 1} = {Gp1, Gp2, Gp3, . . .}
we use the notation {Gpn}, each graph Gpn has pn vertices for a fixed p ≥ 1.

We call a sequence {Gpn} Kp-removable if it satisfies the following two
properties:

A1 Gp1
∼= Kp,

A2 Gpn − Kp
∼= Gp(n−1) for every n ≥ 2 and every (induced) Kp in Gpn.

In this paper we investigate Kp-removable sequences. In Section 2 we
give a general construction for such sequences. In Section 3 we specialize
to sequences in which each graph is regular; we call these regular (Kp, λ)-
removable sequences, λ is a fixed number, 0 ≤ λ ≤ p, referring to the fact that
Gpn is (λ(n−1)+p−1)-regular. We classify regular (Kp, 0)-, (Kp, p − 1)-, and
(Kp, p)-removable sequences as the sequences {nKp}, {Kp×n}, and {Kpn}
respectively, thus associating three well-known graphs on pn vertices. In
Section 4 we construct regular (Kp, λ)-removable sequences starting from a
finite group; the graphs in this sequence are similar in construction to Cayley
graphs, we also count the number of Kp’s in these graphs.
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2 Construction of a Kp-removable sequence

for every p ≥ 3, examples

From A1 and A2 above we see that if {Gpn} is Kp-removable then Gp1 = Kp

and Gp2 is the union of this Kp and a ‘new’ Kp, together with some edges
between them. The graph Gp3 is then formed from Gp2 by adding another
Kp and some suitable set of edges between this new Kp and the previous two
Kp’s, and so on. Thus Gpn contains at least n disjoint Kp’s. We use this idea
of constructing Gpn by adding Kp to Kp, up to n Kp’s, in the following:

Here p ≥ 3 and [p] = {1, . . . , p}. Let Λ = (Λ1, . . . ,Λp) be an ordered
p-tuple of subsets of [p], i.e., each Λi ⊆ [p].

Consider a Kp with vertices labelled {(1, 1), . . . , (p, 1)} = {(i, 1) | i ∈ [p]};
call these vertices vertices at level 1, and call this graph HΛ

p1. Now consider
another Kp with vertices labelled {(i, 2) | i ∈ [p]}, vertices at level 2. For any
vertex (i, 2) join it to vertices {(i′, 1) | i′ ∈ Λi} at level 1; call this graph HΛ

p2.
Now consider a third Kp with vertices labelled {(i, 3) | i ∈ [p]}, at level 3.
Join any vertex (i, 3) to vertices {(i′, 2) | i′ ∈ Λi} at level 2 and to vertices
{(i′, 1) | i′ ∈ Λi} at level 1; this is HΛ

p3.

For any n ≥ 1, consider the graph which has been constructed level by
level, up to n levels, according to the above definition; call this graph HΛ

pn. In
HΛ

pn the vertices are of the form (i, j) for every i ∈ [p] and every 1 ≤ j ≤ n,
(where j is their level); and the edges are of two types:

(i) fixed-level edges, say at level j

((i1, j), (i2, j)) is an edge for all i1, i2 ∈ [p] where i1 6= i2; and

(ii) cross-level edges, for j > j′

((i, j), (i′, j′)) is an edge if and only if i′ ∈ Λi.

For each i ∈ [p] let λi = |Λi| be the number of elements in Λi, and let µi

be the number of sets in Λ which contain i. Call Λ uniform if:

i 6∈ Λi and λi = µi for each i ∈ [p]. (1)

From now on let our Λ be uniform. In Theorem 2.3 we show that if Λ is
uniform then {HΛ

pn} is Kp-removable.
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For any fixed i ∈ [p], let Ii = {(i, 1), . . . , (i, n)} = {(i, j) | 1 ≤ j ≤ n}
be the set of vertices of HΛ

pn in ‘column i’. Then, because i 6∈ Λi, this is an
independent set of vertices.

Now let W be a Kp in HΛ
pn, then each of the p independent sets I1, . . . , Ip

contains exactly one vertex from W ; let Ii contain vertex (i, wi) ∈ W , a vertex
at level wi, for some 1 ≤ wi ≤ n. Thus W = HΛ

pn[(1, w1), . . . , (p,wp)]=Kp.

Lemma 2.1 Let Λ be uniform. For any Kp = W in HΛ
pn the number of edges

in HΛ
pn − W equals the number of edges in HΛ

p(n−1).

Proof. Consider any vertex (i, j) in HΛ
pn, here 1 ≤ j ≤ n. It is adjacent

to λi vertices at each of the j − 1 levels lower than level j, i.e., to λi(j − 1)
such vertices, and to p − 1 vertices at level j, and to µi(n − j) vertices at
levels higher than level j. Thus, because λi = µi, its degree is

deg((i, j)) = λi(n − 1) + p − 1. (2)

So if (i, j) is in W = Kp, then its degree ‘outside’ W is λi(n − 1), which is
independent of its level, j.

Now W contains exactly one vertex from each independent set Ii, so,
when removing W , we remove

∑p
i=1(λi(n − 1)) edges ‘outside’ W , (and

(
p
2

)

‘inside’ W ). But this equals the number of edges removed if we remove the
Kp at level n (because deg((i, n)) is also given by (2)), leaving the graph
HΛ

p(n−1). Hence, the number of edges in HΛ
pn −W equals the number of edges

in HΛ
p(n−1).

Lemma 2.2 Let Λ be uniform. For any p ≥ 3, n ≥ 2, and any Kp = W in
HΛ

pn, we have

HΛ
pn − W = HΛ

p(n−1).

Proof. Let the vertices of W be {(i, wi) | 1 ≤ i ≤ p}. We construct a
bijection φ between the vertices of HΛ

pn −W and the vertices of HΛ
p(n−1), and

then show that φ is an isomorphism. Under φ, for a fixed i ∈ [p], the vertices
in the i-th independent set of HΛ

pn − W , namely in the set Ii\{(i, wi)}, are
mapped to the vertices in the i-th independent set of HΛ

p(n−1), namely to the
set {(i, 1), . . . , (i, n − 1)}, as follows:
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(i, n) → (i, n − 1)
· ·
· ·
· ·

(i, wi + 1) → (i, wi)
(i, wi − 1) → (i, wi − 1)
· ·
· ·
· ·

(i, 1) → (i, 1)

i.e.,

φ(i, j) =
{

(i, j − 1), for wi < j ≤ n;
(i, j), for 1 ≤ j < wi.

Clearly φ is a bijection.

There are two types of edges in HΛ
pn: fixed-level edges and cross-level

edges. First we deal with fixed-level edges.

A typical fixed-level edge in HΛ
pn is ((i1, j), (i2, j)) for some i1, i2 ∈ [p]

where i1 6= i2 and for some j with 1 ≤ j ≤ n. Thus, a typical fixed-level
edge in HΛ

pn − W is ((i1, j), (i2, j)) where i1 6= i2, and j 6= wi1 and j 6= wi2,
(because the vertices (i1, wi1) and (i2, wi2) have been removed). Without loss
of generality let wi1 ≤ wi2 .

Now we check that φ maps two adjacent vertices at level j in HΛ
pn − W

onto two adjacent vertices in HΛ
p(n−1). There are three cases to consider:

(a) 1 ≤ j < wi1 ≤ wi2 ≤ n. Then φ((i1, j), (i2, j)) = (φ(i1, j), φ(i2, j)) =
((i1, j), (i2, j)), which is certainly a (fixed-level) edge in HΛ

p(n−1).

(b) 1 ≤ wi1 < j < wi2 ≤ n. Then φ((i1, j), (i2, j)) = ((i1, j − 1), (i2, j)). Now
wi1 < wi2 and ((i1, wi1), (i2, wi2)) is an edge in W , and so in HΛ

pn, so i1 ∈ Λi2;
and 1 ≤ j − 1 < j ≤ n− 1 and so ((i1, j − 1), (i2, j)) is a (cross-level) edge in
HΛ

p(n−1).

(c) 1 ≤ wi1 ≤ wi2 < j ≤ n. Then φ((i1, j), (i2, j)) = ((i1, j − 1), (i2, j − 1)),
which, again, is a fixed-level edge in HΛ

p(n−1).

Cross-level edges in HΛ
pn are of the form ((i, j), (i′, j′)) where j > j′ and

i′ ∈ Λi. Thus cross-level edges in HΛ
pn − W are of the form ((i, j), (i′, j′)),

where j > j′, j 6= wi, j′ 6= wi′ , and i′ ∈ Λi.
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Now we check that φ maps two adjacent vertices at levels j and j′ in
HΛ

pn − W onto two adjacent vertices in HΛ
p(n−1). There are four cases to

consider:

(a) 1 ≤ j < wi ≤ n and 1 ≤ j′ < wi′ ≤ n. Then φ((i, j), (i′, j′)) =
((i, j), (i′, j′)), a cross-level edge in HΛ

p(n−1).

(b) 1 ≤ j < wi ≤ n and 1 ≤ wi′ < j′ ≤ n. Then φ((i, j), (i′, j′)) =
((i, j), (i′, j′ − 1)), again, a cross-level edge in HΛ

p(n−1).

(c) 1 ≤ wi < j ≤ n and 1 ≤ j′ < wi′ ≤ n. Then φ((i, j), (i′, j′)) =
((i, j − 1), (i′, j′)); here j − 1 ≥ j′. If j − 1 > j′ then this is a cross-level edge
in HΛ

p(n−1), or, if j − 1 = j′, then this is a fixed-level edge in HΛ
p(n−1).

(d) 1 ≤ wi < j ≤ n and 1 ≤ wi′ < j′ ≤ n. Then φ((i, j), (i′, j′)) =
((i, j − 1), (i′, j′ − 1)), a cross-level edge in HΛ

p(n−1).

Thus φ moves edges in HΛ
pn − W to edges in HΛ

p(n−1).

Now, from Lemma 2.1, the graphs HΛ
pn − W and HΛ

p(n−1) have the same
number of edges, and so φ is an isomorphism.

Thus we have the following existence result for Kp-removable sequences:

Theorem 2.3 Let Λ be uniform. For any p ≥ 3 the sequence {HΛ
pn} is

Kp-removable.

Proof. By construction, for every n ≥ 1, the graph HΛ
pn has pn vertices.

Clearly the sequence {HΛ
pn} satisfies A1, and, from Lemma 2.2, it satisfies

A2, hence it is Kp-removable.

Example 1 p = 3, Λ1 = {2}, Λ2 = {1, 3}, Λ3 = {2}. Here Λ = (Λ1,Λ2,Λ3)
is uniform with λ1 = µ1 = 1, λ2 = µ2 = 2, and λ3 = µ3 = 1. The first 3
graphs in the K3-removable sequence {HΛ

3n} are shown in Fig. 1.

The converse of Theorem 2.3 is not true, consider the example:

Example 2 p = 3, Λ1 = {2}, Λ2 = Λ3 = ∅. Here Λ = (Λ1,Λ2,Λ3), and it is
straightforward to show that {HΛ

3n} is K3-removable but λ1 = 1 and µ1 = 0,
and so λ1 6= µ1 and Λ is not uniform.

We call a Kp-removable sequence {Gpn} regular if all graphs in the se-
quence are regular, and irregular if at least one graph in the sequence is
irregular.
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• • •

• • •

• • •

(1, 1) (2, 1) (3, 1)

(1, 2)

(2, 2)

(3, 2)

(1, 3)

(2, 3)

(3, 3)

• • •

• • •

(1, 1) (2, 1) (3, 1)

(1, 2)

(2, 2)

(3, 2)

• • •
(1, 1) (2, 1) (3, 1)

Figure 1: The first 3 graphs in the irregular K3-removable sequence {HΛ
3n}

where Λ = {Λ1,Λ2,Λ3} with Λ1 = {2}, Λ2 = {1, 3}, and Λ3 = {2}. See
Examples 1 and 3.
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In Section 3 we show that all Kp-removable sequences for p = 1 and p = 2
are regular. As the next example shows, an irregular Kp-removable sequence
exists for every p ≥ 3.

Example 3 For a fixed p ≥ 3, Λ1 = {2}, Λ2 = {1, 3}, Λ3 = {2}, and
Λi = ∅ for 4 ≤ i ≤ p. Then Λ = (Λ1, . . . ,Λp) is uniform and so {HΛ

pn}
is Kp-removable. Moreover, {HΛ

pn} is irregular because HΛ
p2 is irregular:

deg((1, 2)) = p but deg((2, 2)) = p+1. See Fig. 1 where p = 3, deg((1, 2)) = 3
but deg((2, 2)) = 4.

We are interested in the Kp’s in HΛ
pn. The next theorem gives necessary

and sufficient conditions for their existence.

Let V = HΛ
pn[(1, v1), . . . , (p, vp)] be an arbitrary induced subgraph in HΛ

pn

with exactly one vertex from each independent set Ii. Let V have vertices
at m different levels: `1, . . . , `m where `1 < · · · < `m. For 1 ≤ k ≤ m, let
Vk = {i | vi = `k} 6= ∅ be the set of first coordinates of all vertices of V at
level `k . Then the sets V1, . . . , Vm partition [p] = {1, . . . , p}, and:

Theorem 2.4 With the above notation V = Kp if and only if for every k,
with 1 ≤ k ≤ m, we have

V1 ∪ · · · ∪ Vk = ∩i∈Vk+1∪···∪Vm Λi,

where we define ∩i∈∅ Λi = [p].

Proof. Suppose that V = Kp, and suppose i′ ∈ V1 ∪ · · · ∪ Vk for some
k with 1 ≤ k ≤ m. Now vertex (i′, vi′) is at a lower level than all vertices
(i, vi) where i ∈ Vk+1 ∪ · · · ∪ Vm, so i′ ∈ Λi for all i ∈ Vk+1 ∪ · · · ∪ Vm. Thus
i′ ∈ ∩i∈Vk+1∪···∪Vm Λi, and V1 ∪ · · · ∪ Vk ⊆ ∩i∈Vk+1∪···∪Vm Λi. But, because,
i 6∈ Λi, we have ∩i∈Vk+1∪···∪Vm Λi ⊆ [p]\{Vk+1 ∪ · · · ∪ Vm} = V1 ∪ · · · ∪ Vk.
Hence V1 ∪ · · · ∪ Vk = ∩i∈Vj+1∪···∪Vm Λi, as required. The converse is straight-
forward.

Example 4 See Example 1 and Fig. 1. Here p = 3, Λ1 = {2}, Λ2 = {1, 3},
and Λ3 = {2}. Consider the induced graph HΛ

33[(1, 1), (2, 3), (3, 1)] = K3.
This K3 has vertices at m = 2 levels, i.e., at level `1 = 1 and at level `2 = 3,
so V1 = {1, 3} and V2 = {2}. For k = 1 we have

V1 = ∩i∈V2Λi = Λ2,
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and for k = 2
V1 ∪ V2 = ∩i∈∅Λi = [3] = {1, 2, 3}.

Such a Kp with vertices at more than one level is a cross-level Kp.

3 Regular sequences, uniqueness of (Kp, λ)-

removable sequences for λ = 0, p − 1, or p

Here we consider regular Kp-removable sequences {Gpn}, i.e., those which
also satisfy:

A3 Gpn is regular for every n ≥ 1.

For such a sequence we use the notation {Rpn}, for every n ≥ 1 Rpn is
regular of degree deg(Rpn). We know that Rp1 = Kp, and the second graph
in this sequence is Rp2, so let us define λ by

λ = deg(Rp2) − deg(Rp1) = deg(Rp2) − (p − 1). (3)

Lemma 3.1 For a fixed p ≥ 1 let {Rpn} be Kp-removable with λ defined as
above. Then

(i) 0 ≤ λ ≤ p,
(ii) deg(Rpn) = λ(n − 1) + p − 1 for every n ≥ 1,
(iii) λ = deg(Rpn) − deg(Rp(n−1)) for every n ≥ 2.

Proof. (i) By A1 and A2 the graph Rp2 contains a Kp with Rp2 −Kp =
Rp1 = Kp. By A3 Rp2 is regular and deg(Rp2) ≥ deg(Kp) = p − 1, and so
λ = deg(Rp2) − (p − 1) ≥ 0. Also, deg(Rp2) ≤ deg(Rp1) + p because the
degree of a vertex in Rp1 can be increased by at most p when constructing
Rp2 (if it is made adjacent to each of the p vertices in the new Kp), hence
λ ≤ p. Thus 0 ≤ λ ≤ p, i.e., λ = 0, . . . , p.
(ii) Here we use induction on n. For n = 1 (ii) is true by A1, and for n = 2
it is true by (3). So assume that n ≥ 3 and that (ii) is true for n − 1, i.e.,
for the graph Rp(n−1). Now Rpn is obtained from Rp(n−1) by adding on a new
Kp and some cross-level edges between them. But Rpn is regular, so we can
count these cross-level edges in two different ways:

(n − 1)p [deg(Rpn) − deg(Rp(n−1))] = p [deg(Rpn) − (p − 1)].
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This gives

deg(Rpn) =
(n − 1)deg(Rp(n−1)) − (p − 1)

n − 2
= λ(n − 1) + p − 1,

using the induction hypothesis. Thus the induction goes through and (ii) is
true for every n ≥ 1.
(iii) This follows directly from (ii).

For a fixed p ≥ 1 and a fixed λ where λ = 0, . . . , p, let {Rpn} be a Kp-
removable sequence in which deg(Rpn) = λ(n−1)+p−1 for every n ≥ 1. We
call the sequence {Rpn} regular (Kp, λ)-removable, and denote it by {Rλ

pn}.
Lemma 3.1(iii) then says that

λ = deg(Rλ
pn) − deg(Rλ

p(n−1)) for every n ≥ 2, (4)

i.e., as we move from Rλ
p(n−1) to Rλ

pn in the sequence {Rλ
pn}, the degree of

regularity always increases by λ.

Now we look at some small values of p.

Example 5 p = 1, so deg(Rλ
1n) = λ(n − 1) where λ = 0 or 1.

λ = 0 Here deg(R0
1n) = 0. So R0

1n is the graph with n isolated vertices, nK1.
Clearly R0

11 = K1 and, for n ≥ 2, the removal of any K1 from nK1 gives
the graph (n − 1)K1, thus {R0

1n} = {nK1} is K1-removable. It is also
clear that {nK1} is the unique regular (K1, 0)-removable sequence.

λ = 1 Here deg(R1
1n) = n − 1. {R1

1n} = {Kn} is the unique regular (K1, 1)-
removable sequence.

Example 6 p = 2, so deg(Rλ
2n) = λ(n − 1) + 1 where λ = 0, 1, or 2.

λ = 0 Here deg(R0
2n) = 1. {R0

2n} = {nK2} is the unique regular (K2, 0)-
removable sequence.

λ = 1 Here deg(R1
2n) = n. Now Kn,n, the complete bipartite graph on 2n

vertices, has degree n. Also K1,1 = K2 and, for every n ≥ 2, the removal
of any K2 from Kn,n results in Kn−1,n−1, i.e. Kn,n −K2 = Kn−1,n−1. So
one example of a regular (K2, 1)-removable sequence is {R1

2n} = {Kn,n},
we show in Corollary 3.2 that this is the unique example.
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n = 3 3K2

b b

b b

b b

K3,3

b b

b b

b b

K2·3 = K6

b b

b

bb

b

b

n = 2 2K2
b b

b b

K2,2

b b

b b

b

K2·2 = K4

b b

b b

b

n = 1 {nK2}
λ = 0 1K2 = K1,1 = K2·1

{Kn,n}
λ = 1

b b {K2n}
λ = 2

Figure 2: The first 3 graphs in each of the K2-removable sequences {nK2},
{Kn,n}, and {K2n}. These are the unique regular (K2, 0)-, (K2, 1)-, and
(K2, 2)-removable sequences, respectively. See Example 6.

λ = 2 Here deg(R2
2n) = 2n−1. {R2

2n} = {K2n} is the unique regular (K2, 2)-
removable sequence.

We see that the 1-st graph in each of the three sequences {R0
2n} = {nK2},

{R1
2n} = {Kn,n}, and {R2

2n} = {K2n} is K2, i.e. we must think of K2 as
being the three graphs 1K2 = K1,1 = K2·1. Then the 2-nd graph in each
sequence is obtained by changing the 1’s in the notation for these graphs
into 2’s, etc. This is illustrated in Fig. 2, where the first 3 graphs in each
of the three sequences {nK2}, {Kn,n}, and {K2n} are shown. Note also that
the n-th graphs in each of the three sequences are well-known graphs on 2n
vertices: nK2, Kn,n, and K2n, respectively.

Recall that a Kp-removable sequence {Gpn} is regular if all of its graphs
are regular, and is irregular if at least one of its graphs is irregular. The next
result shows that all Kp-removable sequences for p = 1 or p = 2 are regular
(and are those given in Examples 5 and 6). From Example 3 we see that
irregular Kp-removable sequences exist for every p ≥ 3.

Corollary 3.2 For p = 1 or p = 2 all Kp-removable sequences are regular,
(and are given in Examples 5 and 6).
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Proof. (p = 2) Let {G2n} be a K2-removable sequence, then G21 = K2. A
candidate for G22 must be a graph on 4 vertices with at least two disjoint
K2’s, and the removal of any K2 must leave a K2. The only possibilities are:
(a) 2K2, (b) K2,2, or (c) K2·2 = K4, all of which are regular.
(a) We prove by induction on n that if {G2n} is an arbitrary K2-removable
sequence which begins {K2, 2K2, . . .} then it is the regular sequence {nK2}.

Let n ≥ 3 and suppose that G2(n−1) = (n − 1)K2. Now consider G2n

which is the union of (n − 1)K2 and a ‘new’ K2 (and some edges between
them); let edge (u, v) be this new K2. If (u, v) is an isolated K2 then we
are finished, so, assume that u is adjacent to vertex u1 in G2(n−1). Now
G2(n−1) = (n − 1)K2 and n ≥ 3 so G2(n−1) contains some edge (u2, u3) with
u2 6= u1 and u3 6= u1. But G2n − (u2, u3) contains the path on the three
vertices u1, u, and v (or triangle if (v, u1) is also an edge); a contradiction
because G2n − (u2, u3) = (n− 1)K2. Thus (u, v) must be an isolated K2 and
the induction goes through, i.e., G2n = nK2 and so {G2n} = {nK2}.
(b) Similarly we use induction to show that any K2-removable sequence
{G2n} which begins {K2 = K1,1,K2,2, . . .} is the regular sequence {Kn,n}.

Let n ≥ 3 and suppose that G2(n−1) = Kn−1,n−1; let the 2 independent
sets of G2(n−1) be I1 = {u1, . . . , un−1} and I2 = {v1, . . . , vn−1}, and let the
new K2 of G2n be the edge (u, v). Now (u, v) cannot be isolated so let vertex
u be adjacent to some vertices in G2(n−1). Suppose that u is adjacent to
vertex uj1 ∈ I1 and to vertex vj2 ∈ I2, then G2n[u, uj1, vj2] = C3, an odd
cycle. Now remove any K2 = (uj3, vj4) where j3 6= j1 and j4 6= j2, then
G2n − (uj3, vj4) = Kn−1,n−1 still contains this odd cycle, a contradiction.
Thus u is adjacent to vertices from exactly one of I1 or I2, say I2.

Now suppose that u is not adjacent to every vertex in I2, suppose that
it is not adjacent to vj5, say. Consider the edge (u1, vj6) where j6 6= j5. In
the graph G2n − (u1, vj6) = Kn−1,n−1 the set of vertices {u2, . . . , un−1, u} =
{I1 ∪ {u}}\{u1} is one of the independent sets and {I2 ∪ {v}}\{vj6} is the
other. Thus (u, vj5) is an edge, a contradiction. So u is adjacent to all
vertices in I2. Similarly v is adjacent to all vertices in I1. Thus G2n = Kn,n

and {G2n} = {Kn,n}.
The proofs for (c) K2·2 = K4 and the case p = 1 are similar.

Before the next main result, Theorem 3.4, we need:
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Lemma 3.3 For a fixed p ≥ 1 let {Rλ
pn} be regular (Kp, λ)-removable. Then,

for every n ≥ 1,
(i) Rλ

pn contains ≥ n disjoint Kp’s,
(ii) Rλ

pn contains no Kp+1’s for 0 ≤ λ ≤ p − 1.

Proof. (i) See the first paragraph of Section 2.

(ii) Let 0 ≤ λ ≤ p − 1. Suppose that for some p + 1 vertices {v1, . . . , vp+1}
of Rλ

pn we have Rλ
pn[v1, . . . , vp+1] = Kp+1. Consider Rλ

pn − Kp where Kp =
Rλ

pn[v1, . . . , vp]. Clearly vp+1 ∈ Rλ
pn − Kp and deg(vp+1) has decreased by

p; but from (4) it should have decreased by λ, a contradiction because
0 ≤ λ ≤ p − 1.

Recall that Kp×n = Kn,...,n︸ ︷︷ ︸
p

denotes the complete p -partite graph on pn

vertices.

Theorem 3.4 For a fixed p ≥ 2 there is a unique regular (Kp, λ)-removable
sequence for λ = 0, p − 1, or p:
(i) {nKp} is the unique regular (Kp, 0)-removable sequence,
(ii) {Kp×n} is the unique regular (Kp, p − 1)-removable sequence,
(iii) {Kpn} is the unique regular (Kp, p)-removable sequence.

Proof. The proofs of (i) and (iii) are straightforward.
(ii) (λ = p−1) We use induction on n. Let {Rp−1

pn } be an arbitrary regular

(Kp, p − 1)-removable sequence; for n = 1 we know that Rp−1
p1 = Kp = Kp×1.

Let n ≥ 2, then Rp−1
pn contains a Kp = Rp−1

pn [v1, . . . , vp], say. By the induction

hypothesis we have Rp−1
pn −Kp = Rp−1

p(n−1) = Kp×(n−1). Let I1, . . . , Ip be the p

independent sets of Rp−1
p(n−1), each has n−1 vertices. Now suppose that in Rp−1

pn

a vertex from {v1, . . . , vp}, say vi, is adjacent to a vertex from each of these
p independent sets; call these vertices {u1, . . . , up}, where uk ∈ Ik for k =
1, . . . , p. Then Rp−1

pn [vi, u1, . . . , up] = Kp+1, a contradiction to Lemma 3.3(ii).
Thus vi is adjacent to vertices in at most p − 1 of the independent sets
I1, . . . , Ip.

Now vi is adjacent to (p− 1)(n− 1) vertices from I1 ∪ · · · ∪ Ip, so it must
be adjacent to all n − 1 vertices in some p − 1 of I1, . . . , Ip. Suppose that in
Rp−1

pn two distinct vertices from {v1, . . . , vp}, say vi1 and vi2, are adjacent to
all of the vertices in the same p − 1 independent sets, say I1, . . . , Ip−1. Let
uk ∈ Ik for k = 1, . . . , p− 1. Then Rp−1

pn [vi1, vi2, u1, . . . , up−1] = Kp+1, again a

13



contradiction. Thus, any two distinct vertices from {v1, . . . , vp} are adjacent
to all vertices in distinct (p − 1)-sets of {I1, . . . , Ip}.

For i = 1, . . . , p let vi be non-adjacent to all vertices in the independent
set Ii′ for some i′ = 1, . . . , p. By above the mapping vi ↔ Ii′ is a bijection.
Then {vi} ∪ Ii′ is an independent set in Rp−1

pn , and vi is adjacent to all the
vertices in all other independent sets. This is true for every i = 1, . . . , p.
It is now clear that Rp−1

pn = Kp×n, and so the induction goes through and
{Rp−1

pn } = {Kp×n}.

Note that this theorem connects three well-known graphs on pn vertices:
nKp, Kp×n, and Kpn. The case p = 2 was discussed in Example 6 and
illustrated in Fig. 2. Note also that the three regular sequences (i) {nKp},
(ii) {Kp×n}, and (iii) {Kpn} are the sequences {HΛ

pn} where (i) Λ = (∅, . . . , ∅︸ ︷︷ ︸
p

),

(ii) Λ = ([p]\{1}, . . . , [p]\{p}), and (iii) Λ = ([p], . . . , [p]), respectively. (In
(iii) Λ is not uniform.)

So, for p = 1 or p = 2 and all values of λ, and for every p ≥ 3 and λ = 0,
p − 1, or p, there is a unique regular (Kp, λ)-removable sequence.

4 Levelled Cayley Graphs, more regular (Kp, λ)-

removable sequences

Generally our construction of {HΛ
pn} from Section 2 gives irregular sequences.

For an arbitrary vertex (i, j) ∈ HΛ
pn we have deg((i, j)) = λi(n − 1) + p − 1,

see (2). So HΛ
pn is regular if and only if λi is constant for all i ∈ [p]. We set

λi = λ then HΛ
pn is regular of degree λ(n − 1) + p − 1, (see Lemma 3.1(ii)),

and {HΛ
pn} is a regular (Kp, λ)-removable sequence.

We now construct a regular (Kp, λ)-removable sequence using a finite
group. This combines the construction of {HΛ

pn} from Section 2 with the
construction of a Cayley graph; see, for example, p. 122 of Biggs [2].

Let p ≥ 3 and let Gp = {g1, . . . , gp} be a finite group with p elements,
where g1 = e is the identity element. Let Λ ⊆ Gp be a subset of Gp with
e 6∈ Λ and |Λ| = λ.

Now consider the following graph, a levelled Cayley graph, Γn = Γn(Gp,Λ):
It has n ≥ 1 levels of vertices, each level having p vertices. For any fixed j

14



with 1 ≤ j ≤ n the vertices at level j are {(g1, j), . . . , (gp, j)} = {(g, j) | g ∈ Gp},
and the edges are of two types:

(i) fixed-level edges, say at level j

((g, j), (h, j)) is an edge for all g, h ∈ Gp where g 6= h;

(i.e., the ‘fixed-level’ graph is Kp), and
(ii) cross-level edges, for j > j′

((g, j), (g′, j′)) is an edge if and only if g′g−1 ∈ Λ.

Using Theorem 2.3 it is straightforward to prove:

Theorem 4.1 For any finite group Gp with p elements and any Λ ⊆ Gp with
e 6∈ Λ and |Λ| = λ, the sequence {Γn(Gp,Λ)} is regular (Kp, λ)-removable.

Now, for any Gp with p ≥ 3 and for each λ = 0, . . . , p−1, there exists a Λ
satisfying the requirements in Theorem 4.1, and Theorem 3.4(iii) takes care of
λ = p, so we have the following existence result for regular (Kp, λ)-removable
sequences.

Theorem 4.2 For any p ≥ 3 and any λ = 0, . . . , p, there exists a regular
(Kp, λ)-removable sequence, namely the sequence {Γn(Gp,Λ)}, where Gp is
any finite group of order p and Λ is any subset of Gp with e 6∈ Λ and |Λ| = λ.

Let Λ denote the complement of Λ in Gp and let 〈Λ〉 be the subgroup
generated by Λ, also let 〈Λ〉g denote a typical coset of this subgroup.

Let V = Γn[(g1, v1), . . . , (gp, vp)] be an arbitrary induced subgraph in
Γn(Gp,Λ) with exactly one vertex from each independent set Ii = {(gi, j) | 1 ≤
j ≤ n}, where i = 1, . . . , p. We are interested in the Kp’s in Γn(Gp,Λ). The
next theorem gives a necessary and sufficient condition for this V to be a Kp,
this condition is cleaner than the corresponding condition of Theorem 2.4 for
the graph HΛ

pn; it also enables us to count the number of Kp’s in Γn(Gp,Λ).

As in Section 2 let V have vertices at m different levels: `1 < · · · < `m.
For 1 ≤ k ≤ m, let Vk = {gi | vi = `k} 6= ∅ be the set of first coordinates of
all vertices of V at level `k. Then the sets V1, . . . , Vm partition Gp, and we
have:
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Theorem 4.3 With the above notation V = Kp if and only if for every k,
with 1 ≤ k ≤ m, Vk is a union of cosets of 〈Λ〉.

Proof. Suppose that V = Γn[(g1, v1), . . . , (gp, vp)] = Kp. Now `m =
max{v1, . . . , vp} is the highest level of Γn(Gp,Λ) which contains vertices from
V , and Vm = {gi | vi = `m} is the set of first coordinates of all vertices of V
at this highest level.

Let s be an arbitrary element in Vm ⊆ Gp. Now consider the graph
V ′ = Γn[(g1s

−1, v1), . . . , (gps
−1, vp)], let us reorder the vertices in V ′ so that

V ′ = Γn[(g1, v
′
1), . . . , (gp, v

′
p)]; we use this version of V ′. The graph V ′ is also

a Kp and the highest level of its vertices is `m also. Then V ′
m = {gi | v′

i =
`m} = Vms−1 is the set of first coordinates of these vertices. We show that
V ′

m is a union of cosets of 〈Λ〉.
First we show that Λ ⊆ V ′

m. Now g1 = e ∈ Λ and s ∈ Vm, so certainly
e = ss−1 ∈ V ′

m. So vertex (g1, v
′
1) = (e, `m) ∈ V ′ lies at level `m. Let

gi 6= e and let gi ∈ Λ, but suppose that gi 6∈ V ′
m. This means that vertex

(gi, v
′
i) ∈ V ′ does not lie at level `m so it must lie at a lower level, i.e., `m > v′

i.
Now, because ((e, `m), (gi, v

′
i)) is an edge in V ′ then ((s, `m), (gis, v

′
i)) is an

edge in V and so in Γn(Gp,Λ); so giss
−1 = gi ∈ Λ, a contradiction because

gi ∈ Λ. Thus for every gi ∈ Λ, then gi ∈ V ′
m, i.e., Λ ⊆ V ′

m.

Next we show that 〈Λ〉 ⊆ V ′
m. For any r ≥ 1 let

∏
(r) denote a product

of r arbitrary elements from Λ. By induction we show, for any fixed r ≥ 1,
that every

∏
(r) ∈ V ′

m. Now Λ ⊆ V ′
m, i.e., every

∏
(1) ∈ V ′

m. Assume
for some r with r ≥ 1 that every

∏
(r) ∈ V ′

m. Now suppose that some∏
(r + 1), say h(r + 1) = a1 · · · ar+1 6∈ V ′

m, but each a1, . . . , ar+1 ∈ Λ. Let
h(r) = a2 · · · ar+1, then, by the induction hypothesis, h(r) ∈ V ′

m so vertex
(h(r), `m) ∈ V ′ is at the highest level `m and the vertex in V ′ with first
coordinate h(r + 1) is at a lower level. There is an edge between these two
vertices so h(r + 1)h(r)−1 = a1 ∈ Λ, a contradiction because a1 ∈ Λ. Thus
h(r + 1) ∈ V ′

m and the induction goes through, and so 〈Λ〉 ⊆ V ′
m.

Finally we show that V ′
m is a union of cosets of 〈Λ〉. Let g ∈ V ′

m, but
suppose that g 6∈ 〈Λ〉. Then, by similar reasoning to before, we see that every∏

(1)g ∈ V ′
m, and by induction, that every

∏
(r)g ∈ V ′

m for every r ≥ 1; thus
the coset 〈Λ〉g ⊆ V ′

m. Thus V ′
m is a union of cosets of 〈Λ〉, and so Vm = V ′

ms
is also.

Now we return to the graph V and show that Vk is a union of cosets of
〈Λ〉 for every 1 ≤ k ≤ m. From above this is true for Vm, so assume for all k
with k ≤ m that Vk is a union of cosets of 〈Λ〉, we show that Vk−1 is also.
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Let g ∈ Vk−1, we show that the coset 〈Λ〉g ⊆ Vk−1. As before first we
show that every

∏
(1)g ∈ Vk−1, for, suppose not, then:

Either
∏

(1)g ∈ Vk′ where k′ > k − 1, so, by the induction hypothesis, Vk′

is a union of cosets of 〈Λ〉. Thus 〈Λ〉∏
(1)g = 〈Λ〉g ⊆ Vk′ , so g ∈ Vk′ , a

contradiction because g ∈ Vk−1;
Or

∏
(1)g ∈ Vk′ where k′ < k − 1, i.e., level `k′ is lower than level `k−1.

So vertex (
∏

(1)g, `k′ ) ∈ V is at a lower level than vertex (g, `k−1) ∈ V , so∏
(1)gg−1 =

∏
(1) ∈ Λ, again a contradiction.

So
∏

(1)g ∈ Vk−1, and we proceed by induction as before to show that for
any r ≥ 1 then every

∏
(r)g ∈ Vk−1 and so 〈Λ〉g ⊆ Vk−1, and the induction

on k goes through; thus Vk−1 is a union of cosets of 〈Λ〉.
So, in conclusion, for any k with 1 ≤ k ≤ m, Vk is a union of cosets of

〈Λ〉, as required.

For the converse let each Vk be a union of cosets of 〈Λ〉. Let (g, `k)
and (g′, `k′) be two arbitrary vertices in V , we show that ((g, `k), (g

′, `k′))
is an edge in Γn(Gp,Λ). If `k = `k′ then, certainly, ((g, `k), (g

′, `k′)) is an
edge by construction of Γn(Gp,Λ). Otherwise, without loss of generality, let
`k > `k′ . Then g and g′ are in different cosets of 〈Λ〉, so g′g−1 6∈ 〈Λ〉, so

g′g−1 ∈ 〈Λ〉 ⊆ Λ, and again ((g, `k), (g
′, `k′)) is an edge. Thus V = Kp as

required.

Now we count the number of Kp’s in Γn(Gp,Λ); let |Gp : 〈Λ〉| be the index
of 〈Λ〉 in Gp, i.e., the number of cosets of 〈Λ〉 in Gp.

Corollary 4.4 The number of Kp’s in Γn(Gp,Λ) is given by

n|Gp:〈Λ〉|.

Proof. Consider any coset 〈Λ〉g, let us ‘place’ the elements of this coset
at any fixed level j, where 1 ≤ j ≤ n, in the graph Γn(Gp,Λ). Each such
placement of every coset of 〈Λ〉 gives a Kp and every Kp corresponds to such
a placement of every coset of 〈Λ〉. Hence, the number of Kp’s in Γn(Gp,Λ)
equals the number of such placements of all the cosets of 〈Λ〉. There are

|Gp : 〈Λ〉| cosets, and n levels to place each, hence n|Gp:〈Λ〉| such placements

and so n|Gp:〈Λ〉| corresponding Kp’s.
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Example 7 (a) Let Sym(3) = {e, (12), (13), (23), (123), (132)} be the sym-
metric group on {1, 2, 3}, and let Λ = {(12), (13), (23), (123)}. Then Λ =
{e, (132)} and 〈Λ〉 = {e, (123), (132)}; the other coset of 〈Λ〉 is 〈Λ〉(12) =
{(12), (13), (23)}. Consider the graph Γ2(Sym(3),Λ) shown in Fig. 3(a), we
have |Sym(3) : 〈Λ〉| = 2 so this graph has 22 = 4 K6’s. They are the 2
fixed-level K6’s, Γ2[(e, 1), ((123), 1), ((132), 1), ((12), 2), ((13), 2), ((23), 2)],
and Γ2[(e, 2), ((123), 2), ((132), 2), ((12), 1), ((13), 1), ((23), 1)]. This is the 2-
nd graph in the regular (K6, 4)-removable sequence {Γn(Sym(3),Λ)}.
(b) Let Z6 = {0, 1, 2, 3, 4, 5} be the additive group (mod 6), and let Λ =
{1, 2, 4, 5}. Then Λ = 〈Λ〉 = {0, 3} and the other cosets of 〈Λ〉 are {1, 4}
and {2, 5}. Thus |Z6 : 〈Λ〉| = 3 and Γ2(Z6,Λ) has 23 = 8 K6’s, see
Fig. 3(b). One such K6 is Γ2[(0, 2), (3, 2), (1, 1), (4, 1), (2, 1), (5, 1)], and an-
other is Γ2[(0, 2), (3, 2), (1, 1), (4, 1), (2, 2), (5, 2)], in which the vertices cor-
responding to coset {2, 5} have been moved up one level. This is the 2-nd
graph in the regular (K6, 4)-removable sequence {Γn(Z6,Λ)}.

Note that the two graphs in Example 7 are non-isomorphic because they
have a different number of K6’s, they are the 2-nd graphs in two differ-
ent regular (K6, 4)-removable sequences. So, in general, regular (Kp, p − 2)-
removable sequences are not unique.
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b b b b b b

b b b b b b
(e, 2) ((12), 2) ((13), 2)((23), 2)((123), 2) ((132), 2)

(e, 1)

((12), 1)((13), 1)((23), 1) ((123), 1)

((132), 1)

(a)

b b b b b b

b b b b b b
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 1)

(1, 1) (2, 1) (3, 1) (4, 1)

(5, 1)

(b)

Figure 3: The non-isomorphic graphs (a) Γ2(Sym(3),Λ) where Λ =
{(12), (13), (23), (123)}, and (b) Γ2(Z6,Λ) where Λ = {1, 2, 4, 5}. See Ex-
ample 7.
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Example 8 Consider the graphs Γ3(Z4, {1}) and Γ3(Z4, {2}), shown in
Figs. 4(a) and (b) respectively. Both graphs have 3 K4’s. In Γ3(Z4, {1}) the
union of all edges which lie outside its 3 K4’s is a C12, however in Γ3(Z4, {2})
this union is C6∪C6. Thus Γ3(Z4, {1}) 6= Γ3(Z4, {2}) and so {Γn(Z4, {1})} 6=
{Γn(Z4, {2})}, and we have two different regular (K4, 1)-removable sequences.

Example 8 illustrates that, in general, regular (Kp, 1)-removable sequences
are not unique.
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b b b b

b b b b

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(a)

b b b b

b b b b

b b b b

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(b)

Figure 4: The non-isomorphic graphs (a) Γ3(Z4, {1}) and (b) Γ3(Z4, {2}).
See Example 8.
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Theorem 3.4 states that, for a fixed p ≥ 2, the only regular (Kp, 0)-,
(Kp, p−1)-, and (Kp, p)-removable sequences are unique. Above we give two
different examples of a regular (Kp, 1)-removable sequence, and two different
examples of a regular (Kp, p−2)-removable sequence; thus, in general, regular
(Kp, λ)-removable sequences are not unique unless λ = 0, p − 1, or p.

Some final comments:
If, for some Gp and Λ we have |Gp : 〈Λ〉| = 1, then the graph Γn(Gp,Λ)

has exactly n Kp’s which is the least number allowed by Lemma 3.3(i). Such
a graph has no cross-level Kp’s; e.g., Γ3(Z4, {1}) shown in Fig. 4(a).

It is also worth mentioning that for any group Gp: (see Theorem 3.4)
(i) {Γn(Gp, ∅)} = {nKp} is the unique regular (Kp, 0)-removable sequence,
(ii) {Γn(Gp,Gp\{e})} = {Kp×n} is the unique regular (Kp, p − 1)-removable
sequence,
(iii) {Γn(Gp,Gp)} = {Kpn} is the unique regular (Kp, p)-removable sequence.
(Note that in (iii) we do not have e 6∈ Λ.) Thus the unique regular (Kp, λ)-
removable sequences for λ = 0, p − 1, or p can all be constructed from an
arbitrary group Gp.

For other papers on graph sequences see Barefoot, Entringer, and Jack-
son [1], and the references therein; another somewhat related paper is Duchet,
Tuza, and Vestergaard [3].

We thank the referees for suggestions and comments which improved this
paper.
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