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Abstract

We give a combinatorial proof of an additive characterization of
a skew Hadamard (n, %1, —) difference set in an abelian group G.
This research was motivated by the p = 4k + 3 case of Theorem 2.2
of Monico and Elia [4] concerning an additive characterization of
quadratic residues in Z,. We then use the known classification of
skew (n, ”Tfl, ”T*‘(’)—difference sets in Z, to give a result for integers
n = 4k + 3 that strengthens and provides an alternative proof of the

p = 4k + 3 case of Theorem 2.2 of [4].
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1 Introduction: difference sets in (G and an
additive characterization of () in Z,

Let G be an abelian group of order n written additively, with identity 0,
and let G* = G\{0}. Let Z,, denote the integers modulo n. For most of
this paper n will be an integer of the form n = 4k 4 3, with £ > 1. We also
use [n] ={1,2,...,n}.



We start with some Definitions, see p.298 and p.356 of Beth, Jungnickel
and Lenz [1]:

Definitions 1.1  (n, k, A)-difference set in G, skew

(1) A (n, K, A)-difference set in G is a k-subset D = {dy,dz,...,d,} C G
with the property that every g € G* occurs exactly A times as a
difference d; — d; for d;,d; € D, and 1 <4, j < K, where i # j.

(2) A (n, k, A)-difference set D is skew if G = {0}UDU—D is a partition of G.

Example 1.2 G = Zy;. D = {1,3,4,5,9} is a (11,5, 2)-difference set.
Also D is skew because Z1; = {0}U{1, 3,4,5,9}U{2,6,7,8, 10} is a partition
of le.

Now let p = 4k + 3 be a prime, with £ > 1. Let @ be the set of
quadratic residues in Z,, and N be the set of quadratic non-residues. We
have @ = —N, and |Q| = |N| = 21, and Z, = {0} UQU —Q is a partition
of Zy.

In Theorem 2.2 of Monico and Elia [4] the following characterization is
proved:

Let p = 4k + 3 be prime and let d, = p+ . Suppose A C Zy and B = Zy\ A.
Then A = Q, the set of quadmtzc Teszdues of Zyp, if and only if

1. |A|=22
2. 1€A,

3. every a € A can be written as an ordered sum of two elements from
A in exactly d, — 1 ways, and

4. everyb € B can be written as an ordered sum of two elements from A
in exactly d, ways.

In §2, motivated by this Theorem, we present our main result (Theo-
rem 2.2) which gives an additive characterization of a skew (n, 251, 2=3)-
difference set in G. The proof of this result is purely combinatorial.

In §3, we use the known classification of skew (n, "Tfl, "ng)—diﬁerence

sets in G = Z,, to give our Theorem 3.4 that strengthens and provides an
alternative proof for the p = 4k + 3 case of Theorem 2.2 of [4]. (The other

case of Theorem 2.2 of [4] involves primes p = 4k + 1.)



2 Skew difference sets and properties P1, P2, P3

Before the main result of this paper we need the following Lemma 2.1.

Lemma 2.1  Let G be an abelian group of order n > 1, and let X =
{z1, T2, ..., 25} be an arbitrary k-subset of G.

(i) Then X is a (n, K, \)-difference set if and only if for every g € G* we
have |(g+ X) N X| = A.

(ii) Let g € G* be arbitrary. Then |(g — X) N X| equals the number of
ordered sums g = x;+x; where ;,x; € X, (x1 = x2 is allowed here).

Proof. (i) Let ¢ € G* be arbitrary, and let {z;,z;} C X. Clearly
g = x; — x;, if and only if g+ x; = x;, if and only if x; € g+ X. Thus each
expression of g as a difference of two elements from X results in an element
of |(g + X) N X|, and conversely. This shows the stated equivalence.

(ii) Let ¢ € G* be arbitrary, and let s be the number of ordered sums
g = x; +x; where z;,z; € X.

Let h € (¢ —X)NX, then h = g — x; = x;, for some z;,z; € X. Hence
g = z; +x; is an ordered sum, where z;,z; € X. Thus [(¢ — X) N X| <.
Conversely, an ordered sum g = x; + x;, yields h = g — x; = x;, where
he(g—X)NX. Sos<|(g—X)NX]. Thus |(g — X)NX]|=s. |

Inspired by Theorem 2.2 of Monico and Elia [4], we have the following
main result.

Theorem 2.2  Let G be an abelian group of order n = 4k + 3. Suppose
A C G* and B = G*\A. Then A is a skew (n, 5%, 222)-difference set if
and only if

P1. |A| = 25t

P2. every a € A can be written as an ordered sum of two elements from

A in exactly "Tf?’ ways, and

P3. every b € B can be written as an ordered sum of two elements from

A in exactly "TH ways.

Proof. First the forward implication: Assume A is a skew (n, 5= T)—
difference set. Then G = {0} U AU —A is a partition of G and |A|
so P1 is satisfied.

For any g € G* it is straightforward to show that G = {g} U (¢ + A) U
(g — A) is also a partition of G.
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Define 41 = {g} N4, A2 =(g+A)NA, and A3 = (g — A)NA. We
have A=GNA=({gtU(g+A)U(g—A)NA=A1UAyUA;z. Asusual
g € G* = AU B, and we consider two cases:

For any g € A: Here 41 = {g}, and A = {g} U A3 U A3 is a partition
of A. Now Ay = (g +A)NA, so |As] = |(g+A) NAl = 22 using
Lemma 2.1(i) and the fact that A4 is a (n, 25, 252)-difference set. Further,
Az = (g — A)N A and so, from Lemma 2.1(ii), |A3| equals the number of
ordered sums g = a + o’ where a, a 6 A, (a =d is allowed here). The

partition of A then gives: |43 = 5= — |A | = 253, Thus P2 is satisfied.

For g € B: Here A} = (), and A = AyU A3 is a partition of A. By a similar
argument to above we have |As| = "T*g, and then the partition of A gives
|As| = 251 — |Ay| = 2HL. Thus P3 is satisfied.

Thus P1, P2, and P3 are satisfied.
Now the backward implication: Assume A = {a1,a2,...,an-1} C G*
2

and B = G*\ A where P1, P2, and P3 are satisfied, so |B| = 251

We first show that AN —A = 0.

From P2 each of the "Tfl elements a € A can be written as an ordered
sum of two elements from A in "T*P’ ways, and from P3 each of the 251
elements b € B can be written as an ordered sum of two elements from
A in 2 ways. This gives a total of (252)(252) 4 (251)(2H) = (251)2
ordered sums a; + aj, where i, j € [25=].

Now a fixed ordered sum a; + aj» = a’ € A or V/ € B can only appear
at most once amongst these (251)? ordered sums. But there are exactly
|A| x|A| = (%51)? ordered sums a;+a;, hence every ordered sum a; +aj; for
alli,j € [;] will appear exactly once amongst the above ("2 2-1)2 ordered
sums. Now 0 ¢ AUB = G*, and so each of the above (251)? ordered sums
a; +a; #0, i.e., a; # —aj, for all 4,5 € [251].

Hence AN —A =0, and then G* = AU —A is a partition of G*. Thus
B=—-Aand G={0}UAU—A is a partition of G.

Now we show that A4 is a (n, 251, 223)-difference set.

Let g € G* = AU B. First consider g € A, say g = ag. There are
in total ﬂ —-1= "% ordered sums g = a; + (g — a;) with al € A and
g—a; € A U B, one for each i € [%31]\{¢}. From P2 exactly 3 of these
ordered sums have g—a; €A, so exactly —3 — "T*P’ =" 3 of them have
g—ai € B. So, g can be expressed as g = a—|—b where a € A and b € B
in "Z ways, but B = —A, so g can be expressed as g = a — a’ for a pair
{a,d’} € Ain 233 ways.

Now con31der g € B, so g & A. Then there are "Tfl ordered sums
g=a;+(g—a;) with a; € A and g — a; € AU B, one for each i € [252].




From P3 exactly "“ of these ordered sums have g — a; € A, so exactly
"21 — "Il = "— of them have g — a; € B. And then, as above, g can be
expressed as g = a — a’ for a pair {a,a’} C A in "Tf?’ ways.

So every g € G* can be expressed as g = a — a’ for a pair {a,a’} C A in
"Tf?’ ways, i.e., Ais a (n, "Tfl, "Tf?’)—diﬁerence set.

From above G = {0} U AU —A is a partition of G, so A is a skew

(n, 251, 223)-difference set in G. |

3 Classification of skew difference sets in 7,
and consequences

Here is an example of Theorem 2.2 of Monico and Elia [4] as mentioned in
the Introduction:

Example 3.1 p=11,d, = 3. Here @ = {1,3,4,5,9}and N = {2,6,7, 8, 10}.
In the following the quadratic residues, @, are given in the first column,
and the quadratic non-residues, IV, in the second:

Q N
1=3+9=9+3 2=1+1=4+9=9+4
3=5+9=9+5 6=3+3=1+5="5+1
4=143=3+1 and 7=9+9=3+4=443
5=1+4=4+1 8=4+4=3+5=5+3
9=445="5+4 10=5+5=14+9=9+1

Asusual let p=4k+3 be a prlme for £ > 1. Recall Paley’s result from

[5] that @ C Z,, is a skew (p, 25+, 22)-difference set.
Skew (n, 251, 2=3)-difference sets in G = Z, are classified in Corol-
lary 3.4 of Johnsen [2], although this classification was essentially shown in

Kelly [3]. See p.356 of [1] for further discussion.

Theorem 3.2 (Johnsen) Let D be a skew (n, 252, 253)-difference set in

the cyclic group Z,. Thenn = p = 4k + 3 is a prime and D = Q 1is the
Paley (p, 1, b= 3) dzﬁerence set of quadratic residues in Zy,, or D = N s

the (p, 2 —, p—) difference set of quadratic non-residues in Zy. ]

Example 3.3 n =p = 11. See Examples 1.2 and 3.1: @ = {1,3,4,5,9}
and N = {2,6,7,8,10} are the two skew (11, 5, 2)-difference sets in Z;.



Using our Theorem 2.2 and Theorem 3.2 and the fact that 1 € Q, we
have the following Theorem 3.4 for integers n = 4k + 3. Theorem 3.4
strengthens and provides an alternative proof of the p = 4k + 3 case of
Theorem 2.2 of Monico and Elia [4].

Theorem 3.4 Let n = 4k + 3 and d,, = "T“. Suppose A C Z7, and
B =Z:\A. Thenn is a prime p and A = Q if and only if

1. |A] =21,
2. 1€A,

3. every a € A can be written as an ordered sum of two elements from
A in exactly d, — 1 ways, and

4. everyb € B can be written as an ordered sum of two elements from A
in exactly d, ways. |

Remark The connection between the p = 4k 4 3 case of Theorem 2.2 of
Monico and Elia [4] and skew (n, 252, 223)-difference sets in Z,, shown in
this paper seems to have been overlooked by the authors of [4], and appears

to be written down here for the first time.
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