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Abstract

A totally magic labeling of a graph with v vertices and e edges
is a one-to-one map taking the vertices and edges onto the integers
1, 2, · · · , v + e, such that the sum h of the label on a vertex and the
labels on its incident edges is a constant independent of the choice of
vertex, and the sum k of an edge label and the labels of the endpoints
of the edge is constant. Such graphs appear to be rare. In this paper
we examine the possible labelings of a union of an odd number of
triangles, and determine the spectrum of possible values h, k for all
known totally magic graphs.
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Introduction

All graphs in this paper are finite, simple and undirected. Unless otherwise
specified, the graph G has vertex set V = V (G) and edge set E = E(G) and
we write e for |E| and v for |V |.

A totally magic labeling λ on a graph G is a one-to-one map λ from
V (G) ∪ E(G) onto the integers 1, 2, . . . , v + e, with the property that, given
any vertex x,

λ(x) +
∑

y∼x

λ(xy) = h

for some constant h, where the sum is over all vertices y adjacent to x, and
given any edge xy,

λ(x) + λ(xy) + λ(y) = k

for some constant k. A graph having a totally magic labeling is called a
totally magic graph.

Totally magic labelings have been discussed in [1]. It is shown in that
paper that totally magic graphs are very rare. The only known infinite
families consist of the unions of an odd number of triangles, mK3, where m
is odd, and the same graphs with precisely one edge deleted. (On the other
hand, the members of these families with m even are never totally magic.)

We define the spectrum of a totally magic graph to be the set of pairs of
values (h, k) that arise as vertex and edge constants in totally magic labelings
of the graph. We shall determine the spectra of the members of the above
two infinite families, showing that there is a labeling for every h and k not
excluded by simple arithmetical considerations.

Constructions

In this paper we examine labelings of mK3 is detail. (This extends the
discussion in Section 5 of [1].) Suppose λ is a totally magic labeling of mK3,
with vertex and edge constants h and k. We know that m is odd. Suppose
the vertices of one of the triangles are labeled x, y, z; suppose the edge
opposite the vertex labeled x receives the label X, and so on. Then

h = x + Y + Z = X + y + Z = X + Y + z, (1)

2



k = X + y + z = x + Y + z = x + y + Z. (2)

If we write s = x + y + z and S = X + Y + Z, then (1) and (2) yield

3h = 2S + s,

3k = S + 2s,

h + k = S + s.

So

3h − 3k = S − s,

whence

S = 2h − k,

s = 2k − h.

Finally, from X + Y + Z = S and x + Y + Z = h we obtain

X − x = S − h = h − k (3)

for every choice of x, that is the difference between an edge label and the
opposite vertex label is a constant, h − k.

Let us write d for h − k. It is clear that h and k determine d. On the
other hand, if d is known, then h and k are determined. For each triangle,S+
s = h + k, so summing over all triangles we get m(h + k). But this is the
sum of all vertex and edge labels in mK3, so it equals 1

2
6m(6m + 1), and

h + k = 3(6m + 1). Therefore

h = 9m + 1
2
(3 + d) and k = 9m + 1

2
(3 − d). (4)

Without loss of generality, let us assume k < h, that is d = h − k > 0.
(k = h is impossible, as it would imply x = X, and if k > h then we can
obtain a dual labeling with k < h by interchanging the labels on each vertex
and its opposite edge.) From (3), every edge label is at least d + 1, and
1, 2, . . . , d are all vertex labels. The edges opposite those vertices receive
labels d + 1, d + 2, . . . , 2d. Proceeding in this way, we see that the set of
vertex labels is

Td(m) = {1, 2, . . . , d, 2d + 1, 2d + 2, . . . , 3d, 4d + 1, . . . , 6m − d}
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and the edge labels are

{d + 1, d + 2, . . . , 2d, 3d + 1, 3d + 2, . . . , 4d, 5d + 1, . . . , 6m}.

So 6m is a multiple of 2d. We have

Theorem 1 If there is a totally magic labeling of mK3, then m is odd and
the vertex and edge constants have the values

h = 9m + 1
2
(3 + d) and k = 9m + 1

2
(3 − d), (4)

for some divisor d of 3m.

(The negative divisors d correspond to the labelings that are duals of those
with positive d.)

Suppose d is a specified positive divisor of 3m. Let 3m = ad. Then the
sum of the elements of Td(m) is

ms =
d∑

i=1

a−1∑

j=0

(2jd + i)

=
d∑

i=1

(a(a− 1)d + ai)

= a(a− 1)d2 + 1
2
ad(d + 1),

s = 3(a − 1)d + 3
2
(d + 1). (5)

So the triples of vertex labels of triangles must form a partition of Td(m)
into m triples, each with sum (5). Conversely, any such partition will define
a totally magic labeling with the constants (4).

Lemma 2 If m is an odd positive integer and d is any divisor of 3m, then
there exists a partition of

Td(m) = {1, 2, . . . , d, 2d + 1, 2d + 2, . . . , 3d, 4d + 1, . . . ,

(2a − 2)d + 1, (2a − 2)d + 2, . . . , (2a − 1)d}

into m triples, each with sum (5), where a = 3m/d.
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Proof. We use two families of 3×n arrays, n odd, which are denoted An and
Bn, and are defined as follows. An has j-th column (j, n+2−2j, 1

2
(n−1)+j),

where entries are reduced modulo n, if necessary, so that they lie in the range
1, 2, . . . , n. This array was used by Kotzig [2]. Each row is a permutation of
{1, 2, . . . , n}, and each column sums to 1

2
(3n + 3). Bn is constructed from a

copy of An by adding n to every entry in the second row and 2n to every
entry in the third row, so each column has sum 1

2
(9n + 3).

First, suppose d is a multiple of 3. Form a master array M by subtracting
1 from each entry of Aa and multiplying by 2d. From each column of M we
construct d/3 triples by adding each of the columns of Bd/3. It is easy to
check that the a(d/3) = m triples form a partition of Td(m). All the triples
have the same sum, because both component arrays have constant column
sum.

If d is not a multiple of 3, then a must be. In that case the master array is
formed from Ba/3, again subtracting 1 and multiplying by 2d. The columns
of Ad are added. �

Here is an illustration of the two constructions for the graph 15K3.
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M =




0 18 36 54 72
72 36 0 54 18
36 54 72 0 18


 Bd/3 =




1 2 3
6 4 5
8 9 7




Partition

1 2 3 19 20 21 37 38 39 55 56 57 73 74 75
78 76 77 42 40 41 6 4 5 60 58 59 24 22 23
44 45 43 62 63 61 80 81 79 8 9 7 26 27 25

Example for a = 5, d = 9,m = 15, column sum 123.

M =




0 10 20
50 30 40
70 80 60


 Ad =




1 2 3 4 5
5 3 1 4 2
3 4 5 1 2




Partition

1 2 3 4 5 11 12 13 14 15 21 22 23 24 25
55 53 51 54 52 35 33 31 34 32 45 43 41 44 42
73 74 75 71 72 83 84 85 81 82 63 64 65 61 62

Example for a = 9, d = 5,m = 15, column sum 129.
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Theorem 3 There is a totally magic labeling of mK3 with vertex and edge
constants h and k if and only if m is odd and h = 9m + 1

2
(3 + d) and

k = 9m + 1
2
(3 − d), where d is a divisor of 3m.

Suppose λ is a totally magic labeling of mK3 corresponding to a negative
divisor d of 3m, with vertex and edge constants h and k, and suppose edge u
satisfies λ(u) = 1. Define µ(x) = λ(x) − 1 for each edge or vertex x. Delete
edge u. Then µ is a totally magic labeling of P3∪ (m−1)K3 with vertex and
edge constants h− 3 and k− 3. This construction can be reversed, so totally
magic labelings of P3 ∪ (m − 1)K3 are equivalent to totally magic labelings
of mK3 in which 1 is an edge label — precisely those for which the divisor d
is negative. Writing f = −d (to avoid negative divisors), we have

Theorem 4 There is a totally magic labeling of P3 ∪ (m− 1)K3 with vertex
and edge constants h and k if and only if m is odd and h = 9m − 1

2
(f + 3)

and k = 9m + 1
2
(f − 3), where f is a positive divisor of 3m.

Conclusion

The only known totally magic graphs not covered by Theorems 3 and 4 are
the trivial case K1, for which h = 1 and k is not defined, and K1 ∪P3, whose
unique totally magic labeling has (h, k) = (6, 9) (see [1]). Thus we have
completely determined the spectrum of every known totally magic graph.
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