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Abstract. In this paper we present interpretations of Lommel polynomials and their deriva-

tives. A combinatorial interpretation uses matchings in graphs. This gives an interpretation

for the derivatives as well. Then Lommel polynomials are considered from the point of view

of operator calculus. A step-3 nilpotent Lie algebra and finite-difference operators arise in the

analysis.

I. Introduction

Interpretations of orthogonal polynomials in terms of combinatorial models has received
a lot of attention over the last decade. S. Dulucq and L. Favreau [3] recently presented a
combinatorial model for Bessel polynomials. A general combinatorial theory for orthogonal
polynomials has been developed in the work of X.G. Viennot [12], de Médicis and Viennot
[2], and in the theory of species, formalized by F. Bergeron [1], A. Joyal [6][7], G. Labelle
[8] and P. Leroux [9] . An analytical study of the zeros of Lommel polynomials may be
found in [5]. The basics of the operator calculus approach are in [4].

Lommel polynomials arise in the study of Bessel functions as the linearization coef-
ficients expressing Jν+n in terms of Jν and Jν−1, cf. Watson [13]. They may be given
explicitly in the form

Rn(ξ, ν) =
[n/2]∑

k=0

(
n − k

k

)
(−1)k Γ(ν + n − k)

Γ(ν + k)
(2/ξ)n−2k

Changing variables to φn(x, ε) = Rn(−2/ε,−x/ε), with ε understood as a parameter, we
have the recurrence

xφn = φn+1 + εnφn + φn−1 (1.1)

with initial conditions φ−1 = 0, φ0 = 1. Thus, these are a family of orthogonal
polynomials. They have the form

φn(x, ε) =
∑

k

(
n − k

k

)
(−1)k (x − kε) · · · (x − (n − k − 1)ε) (1.2)
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In this paper we present some interpretations of Lommel polynomials. We proceed
from a general approach and then specialize to the case of Lommel polynomials. For
example, note that with ε = 0 in equation (1.1), we have the recurrence for Chebyshev
polynomials. In fact, with ε = 0, the polynomials φn become the Chebyshev polynomials
of the second kind.

II. Basic construction: matchings

Let G be a simple graph on n vertices with vertex labels 1 to n and weight wi on vertex
i, 1 ≤ i ≤ n. A matching, M , of G is a set of disjoint edges, a set of edges pairwise having
no vertex in common. If a vertex i is incident to an edge of M , we write i ∈ M , otherwise
i /∈ M . We define the weight of M , WG(M), to be

WG(M) =
∏

i/∈M

wi

If G has an even number of vertices and M is a perfect matching of G, in other words, if
all vertices of G lie in M , then WG(M) is defined to equal 1. Note that every graph has
the empty matching, containing no edges.

For the rest of this work, we will take G to be Pn, the path on n vertices, running
from left to right. We denote WG(M), then, by Wn(M), the weight of the matching M of
Pn.

Define
Pn =

∑

M

(−1)|M | Wn(M)

with |M | the number of edges in M , summing over all matchings M of Pn.

2.1 Proposition. Pn satisfies the recurrence

Pn+1 = wn+1Pn −Pn−1

Proof: Let M be a matching of Pn+1. Either M does not contain the edge (n, n+1)
or it does. Every case where the edge (n, n+1) is not in M corresponds to some matching
on n vertices with the additional factor of wn+1 since n + 1 is in none of them. On the
other hand, in all matchings including the edge (n, n + 1), removing it leaves a matching
on n − 1 vertices with the removal of the edge contributing a minus sign.

We define P−1 = 0, P0 = 1. From the Proposition, this gives P1 = w1, which agrees
with the scheme, since the only matching of P1, a single vertex, is the empty matching,
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with weight w1. Similarly, we have from the Proposition that P2 = w1w2 − 1. The graph
P2 has two matchings — the empty matching with weight w1w2 and the matching which
contains the single edge (1, 2) of weight 1.

Now recall that a three-term recurrence of the form

xφn = φn+1 + bnφn + cnφn−1

with cn ≥ 0 yields a sequence of orthogonal polynomials. In Proposition 2.1, we can
introduce a variable x either additively or multiplicatively into the weights. I.e., consider

(x − un+1)Pn = Pn+1 +Pn−1

which means that x as the eigenvalues of the corresponding tridiagonal matrices are the
zeros of the polynomials Pn. Or we can write wn+1 = xun+1 with the recurrence taking
the form

xun+1Pn = Pn+1 + Pn−1

for example, with constant un+1 = 2, we have the recurrence for the Chebyshev polyno-
mials.

2.1 Lommel polynomials and their derivatives

The recurrence (1.1) corresponds to the weights wi = x − (i − 1)ε. For fixed ε, we
treat φn as a function of one variable, x, and denote it by Rn. Here are some explicit
expressions:

R1 = x

R2 = x2 − εx − 1

R3 = x3 − 3εx2 + 2ε2x − 2x + 2ε

R4 = x4 − 6εx3 + 11ε2x2 − 6ε3x − 3x2 + 9εx − 6ε2 + 1

Now, let G be a simple graph with n vertices labelled 1 to n having weight x− (i−1)ε
on vertex i. Define a k-extended matching of G as a set { v1, . . . , vk,M } of k vertices of G
together with a matching M such that vj /∈ M for 1 ≤ j ≤ k. I.e., no vertex vj is incident
to any edge in M .

Denoting the k-extended matching { v1, . . . , vk,M } by EM , M is called the matching
of EM . For a vertex v ∈ G, we write v ∈ EM if either v = vj for some j, 1 ≤ j ≤ k, or
v ∈ M . Let |EM | = |M | denote the number of edges in the matching of EM .

The weight of EM , WG(EM ) is given by:

WG(EM ) =
∏

i/∈EM

(x − (i − 1)ε)

As above, if every vertex of G lies in EM , then WG(EM ) = 1. We take G = Pn, the path,
and denote WG(EM ) by Wn(EM ).



4

2.1.1 Derivatives of Lommel polynomials

For a combinatorial interpretation of the kth derivative R
(k)
n , start from the contribution

of the matching M , Wn(M) =
∏

i/∈M (x − (i − 1)ε). Consider Wn(M) as a function of
x. Since the derivative of each factor in Wn(M) is 1, for the kth derivative we have, the
summation taken over all k-subsets of vertices { vi1 , . . . , vik } of G such that no vertex vij

is in M ,

W (k)
n (M) =

∑

{i1,...,ik}

k!Wn(M)∏
j

(
x − (ij − 1)ε

)

= k!
∑

{i1, . . . , ik}
vij /∈ M

Wn

(
{i1, . . . , ik,M}

)

= k!
∑

EM

Wn(EM )

this last summation taken over all k-extended matchings EM with matching M . Hence

2.1.1.1 Proposition. The kth derivative of the Lommel polynomial Rn is given by

R(k)
n = k!

∑

E

(−1)|E| Wn(E)

where the summation is over all k-extended matchings of Pn, with |E| denoting the number
of edges in the matching of E.

Note that with k = 0 we recover the original case of Rn, considering a matching as a
0-extended matching.

Example. Consider the second derivative of R4. We have

R4 = x4 − 6εx3 + 11ε2x2 − 6ε3x − 3x2 + 9εx − 6ε2 + 1
1
2 R′′

4 = 6x2 − 18εx + 11ε2 − 3

The 2-extended matchings with corresponding weights are given in the following table:

2 − ext. match. weight
{1, 2, ∅} (x − 2ε)(x − 3ε)
{1, 3, ∅} (x − ε)(x − 3ε)
{1, 4, ∅} (x − ε)(x − 2ε)
{2, 3, ∅} x (x − 3ε)
{2, 4, ∅} x (x − 2ε)
{3, 4, ∅} x (x − ε)

{3, 4, (1, 2)} 1
{1, 4, (2, 3)} 1
{1, 2, (3, 4)} 1
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III. Lommel polynomials and finite-difference calculus

Here we show how to write Lommel polynomials in terms of a recurrence with operator
coefficients. Recall that the solution to the recurrence

fn+1 = afn + bfn−1

with initial conditions f−1 = 0, f0 = 1, is given by

fn =
∑

k

(
n − k

k

)
an−2kbk

(In other terms, we can express the solution to

fn+1 = afn − bfn−1

with the same initial conditions, in terms of Chebyshev polynomials of the second kind:
fn = bn/2Un(a/(2

√
b)).) This formula holds for a and b operators, e.g., matrices, with

f0 = I, the identity, as long as a and b commute. If they do not commute, we apply them
on different sides:

3.1 Proposition. For operators a and b, the solution to the recurrence

fn+1 = fna + bfn−1

with initial conditions f−1 = 0, f0 = I, is given by

fn =
∑

k

(
n − k

k

)
bkan−2k

And similarly with a acting on the left and b on the right.

For Lommel polynomials, introduce the shift operator Tε acting on functions f by

Tεf(x) = f(x − ε)

We denote the operator of multiplication by x by X. Using the relation

(XTε)n1 = x(x − ε)(x − 2ε) · · · (x − (n − 1)ε)

where 1 denotes the constant function 1, we have from equation (1.2),

Rn(x) =
∑

k

(
n − k

k

)
(−Tε)k(XTε)n−2k 1 (3.1)

Comparing with Proposition 3.1, we see
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3.2 Proposition. Define operators Fn by the recurrence

Fn+1 = FnXTε − TεFn−1

with F−1 = 0, F0 = I. Then the Lommel polynomials are given by

Rn(x) = Fn 1

For example,

F1 = XTε , F2 = (XTε)2 − Tε , F3 = (XTε)3 − 2TεXTε

etc.

Another approach to expressions of the form

∑

k

(
n − k

k

)
an−2kbk

involves the nilpotent Lie algebra generated by the operators D2 = (d/dx)2 and X. The
commutator [D2,X] = D2X − XD2 = 2D, while [D,X] = 1. Thus, {D2,D,X, 1 } form
the basis for a nilpotent Lie algebra of step 3, i.e., all commutators of length greater than
3 vanish. Now,

3.3 Proposition. Let fn(x) =
∑

k

(
n − k

k

)
bkxn−2k. Then

fn(x) = 0F1

(
−−
−n

∣∣∣∣ −bD2

)
xn

Proof: Expanding the 0F1 function gives

∑

k

(−bD2)k

(−n)k k!
xn =

∑

k

(n − k)!
n! k!

bkD2k xn

from which the result is clear.

To see the connection with Lommel polynomials, first we review the basic operator
calculus needed. Consider the formal series in one variable

V (z) =
∞∑

n=0

anzn
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this is the symbol of the generalized differential operator V (D), which acts on polynomials
in the variable x. This satisfies

[V (D),X] = V ′(D) (3.2)

V ′(z) denoting the derivative of the series V (z). We assume that a0 = 0, a1 = 1.
Thus, V ′ has a formal multiplicative inverse 1/V ′(z), which we denote by W (z). From
equation (3.2), we see that, defining ξ = XW (D), we have

[V (D), ξ] = 1

From which the usual rules of polynomial calculus follow, such as

V ξn1 = nξn−11

The shift operator Tε has symbol e−εz . Thus, for the operator ξ = XTε, we have the
corresponding operator V (D) with symbol

V (z) =
1
ε

(
eεz − 1

)
(3.3)

which is the (forward) finite-difference operator with step size ε. Next, define the
finite-difference Laplacian with symbol

∆ε(z) =
1
ε2

(
eεz + e−εz − 2

)

Now we have

3.4 Proposition. The Lommel polynomials Rn(x) satisfy

Rn(x) = 0F1

(
−−
−n

∣∣∣∣ ∆ε

)
ξn1

with ξ = XTε.

Proof: Write equation (3.1) in the form

Rn(x) =
∑

k

(
n− k

k

)
(−Tε)kξn−2k1

Then, as in Proposition 3.3,

Rn(x) = 0F1

(
−−
−n

∣∣∣∣ TεV (D)2
)

ξn1

with V (D) the difference operator in equation (3.3). Now calculating with symbols, we
see that

Tε(z)V (z)2 =
1
ε

(
eεz − 1

)(
1 − e−εz

)
= ∆ε(z)

and hence the result.
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IV. Concluding remarks

It would be interesting to consider the combinatorial approach for other families of or-
thogonal polynomials as indicated in §II. In [4], the function 0F1 arises naturally in the
sl(2) calculus yielding eigenfunctions of the radial Laplacian in Euclidean space. Here, we
see that the Lommel polynomials correspond to the finite-difference Laplacian. It appears
that the Lommel polynomials play a natural role in harmonic analysis on a lattice and
merit further study in this context.
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11. G. Szëgo, Orthogonal polynomials, AMS Colloq. Publ., 1975.
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