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Abstract

Each fixed integer n has associated with it | § ] rhombs: p1, po, .. SVIER
where, for each 1 < h < [§], rhomb py is a parallelogram with all
sides of unit length and with smaller face angle equal to h x T radians.

An Oval is a centro-symmetric convex polygon all of whose sides
are of unit length, and each of whose turning angles equals £ x %
for some positive integer £. An (n, k)-Oval is an Oval with 2k sides
tiled with rhombs p1, po, . . SVIESE it is defined by its Turning Angle
Index Sequence, a k-composition of n. For any fixed pair (n, k) we
count and generate all (n, k)-Ovals up to translations and rotations,
and, using multipliers, we count and generate all (n, k)-Ovals up to
congruency. For odd n if an (n, k)-Oval contains a fixed number \ of
each type of rhomb pq, po, .. IEY then it is called a magic (n, k, \)-
Oval. We prove that a magic (n, k, A)-Oval is equivalent to a (n, k, \)-
Cyclic Difference Set. For even n we prove a similar result. Using
tables of Cyclic Difference Sets we find all magic (n, k, A)-Ovals up to
congruency for n < 40.

Many related topics including lists of (n, k)-Ovals, partitions of the
regular 2n-gon into Ovals, Cyclic Difference Families, partitions of tri-
angle numbers, u-equivalence of (n, k)-Ovals, etc., are also considered.
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1 Introduction

An (n, k)-Oval is a centro-symmetric convex polygon all of whose sides are of
unit length, and which is tiled by rhombs; see p.141 of Ball and Coxeter [1]
and Section 3.1 of Schoen [8]. In this paper we investigate (n,k)-Ovals; it
appears that this is the first significant piece of research concerning (n, k)-
Ovals to be published in the mathematical literature. A preliminary version
of some of this research first appeared in Schoen [8]. See Fig. 1 for an example
of a (15,6)-Oval.

TAIS(X) =[43214 1]

RIV(X) = (2,1,2,2,4,2,2)

Figure 1: A (15,6)-Oval, X, its TAIS and RIV.

In Section 2 of this paper we define an (n,k)-Oval using its Turning
Angle Index Sequence (TAIS); we count all (n,k)-Ovals equivalent up to
translations and rotations. We introduce the concept of a multiplier for an
(n, k)-Oval and show how to generate all (n, k)-Ovals using multipliers.

In Section 3 we show the geometrical meaning of multiplier —1 for an
(n, k)-Oval. We count those (n, k)-Ovals with multiplier —1, and those with-
out multiplier —1. We define congruency for (n, k)-Ovals and count (n, k)-
Ovals up to congruency.



In Section 4 we define the Rhombic Inventory Vector (RIV) of an (n, k)-
Oval. This vector contains the number of each type of rhomb that an (n, k)-
Oval contains. For each 2 < n < 10 we list all (n, k)-Ovals up to congruency,
and compute their RIVs.

In Section 5 we study magic (n, k, A)-Ovals. For odd n a magic (n, k, \)-
Oval contains a fixed number A > 1 of each type of rhomb p1, pa, ..., pi2j;
there is a similar definition for even n. We prove that a magic (n,k, \)-
Oval is equivalent to a (n, k, \)-Cyclic Difference Set. Using tables of Cyclic
Difference Sets we find all non-trivial magic (n, k, A\)-Ovals up to congruency
for n < 40.

In Section 6 the rhombs of the regular 2n-gon are partitioned into Ovals.
Cyclic Difference Families are introduced and are shown to be equivalent to
various Oval partitions; we also consider relevant integer partitions of the
triangular number (g)

In Section 7 we define u-equivalence for (n, k)-Ovals. The RIV’s of two u-
equivalent (n, k)-Ovals are closely related to each other. For each 2 < n < 10
we list all (n, k)-Ovals up to u-equivalence .

2 (n,k)-Ovals, TAIS, the number of (n, k)-Ovals,
multipliers, generating all (n, k)-Ovals

Each fixed integer n > 2 has associated with it | 5] rhombs: p1,p2,...,p|z2).

For each 1 < h < L%J rhomb p;, is a parallelogram with all sides of unit

length and with smaller face angle equal to h x T radians; h is the principal
index of the rhomb. The index of an adjacent face angle is n — h. The 7

rhombs for n = 15 are shown in Fig. 2.



Definitions 2.1  Centro-symmetric, turning angle, Oval

(1) A polygon is centro-symmetric if it is unchanged by a rotation of 7
radians (half a circle).

(2) The turning angle at a vertex of a polygon is the supplement of the
interior angle at that vertex.

(3) An Owal is a centro-symmetric convex polygon all of whose sides are of
unit length, and each of whose turning angles equals £ x = for some
positive integer /.

Every Oval necessarily has an even number of sides, which are arranged
in k parallel pairs.

Definitions 2.2  (n, k)-Oval, Turning Angle Index Sequence -TAIS

(1) An (n,k)-Oval is an Oval with 2k sides; it is described by the pair (n, k)
and by its

(2) Turning Angle Index Sequence (TAIS), a list of the turning angle indices
for any k consecutive vertices.

We denote an arbitrary (n, k)-Oval by O and specify a stem vertex of O;
the TAIS of O is then the list of turning angle indices at the k£ consecutive
vertices taken in a counter-clockwise direction starting from the first vertex
after the stem vertex.

Remark 2.3  The TAIS T of an (n, k)-Oval is simply a k-composition of
n, i.e., an ordered list of k positive integers that sum ton: T = [t; ty -+ 1]
with each t; > 1 and Zle t, =n.

0000

P1 P6 P7

Figure 2: The 7 rhombs, and their principal indices, corresponding to n = 15.



Example 2.4 The regular 2n-gon, {2n}, isan (n,n)-Oval with TAIS=[11 --- 1].
——

n

See Fig. 5 for a picture of the regular 12-gon, {12}.

Example 2.5  (n,k) = (15,6). In Fig. 3(a) we show the (15,6)-Oval X
with TAIST =[432141]. Wewrite ¥ =0O(T) =0(432141]). In (b)
the turning angle index at each vertex of X is shown, as well as all indices
of the (g) = 15 rhombs in X. Note that the indices along the straight line
at an ‘external’ vertex sum to n = 15, and the indices around an ‘internal’

vertex sum to 2n = 30.

stem

(a)

Figure 3: See Fig. 1. The (15,6)-Oval X with TAIST =432 14 1].



Let S = {s1,82,...,8k} where 0 < 51 < $9 < -+ < s be a k-subset of
Z,, with increasing elements. Throughout this paper the elements of S will
always be written in increasing order.

Let U(n) denote the group of units modulo n, i.e., the multiplicative
group of elements relatively prime to n.

Definitions 2.6  uS+z, z—equivalent and =, cyclically-equivalent and =y,
(1) uS+z={us1+z,usas+z,...,usp+ 2z} C Z, foru € U(n) and z € Z,.

(2) Two k-subsets S and S’ of Z,, are z-equivalent, S =, ', if there exists
2z € Z,, such that S = 5" + 2.

3) Two TAIS’s T' and T" are cyclically-equivalent, T =.,. 1", if T" is a cyclic
Yy
permutation of T

Remark 2.7  As an example of (3) above:

[t1 to tg ta] =cye [ta t1 ta t3] Scye [ts ta th to] =cye [t t3 ta ]
Sometimes we use = in place of =, or = for convenience.

Let §*(n, k) denote the set of all k-subsets S = {si,s9,...,8:} C Z,
where 0 < s1 < s < --- < 8. Then =, is an equivalence relation on
S*(n, k). We denote the set of equivalences classes of =, by S (n,k). In
an equivalence class [S]=, or [S] we often use as representative the lowest
member of [S] in lexicographic ordering.

Let 7*(n, k) denote the set of all k-compositions of n, i.e., the set of TAIS
T for all (n, k)-Ovals. Then = is an equivalence relation on 7*(n, k). We
denote the set of equivalences classes of =, by ’Tz*cyc (n,k), and a typical

equivalences class by [T]=_,. or [T7].
Theorem 2.12 below gives a bijection between the sets S (n,k) and

> (n,k).

=cyc

=cyc

Definitions 2.8  «(S) and O(«a(S)) or O(T), 5(T)
Let S = {s1,592,...,8k} € Z, where 0 < 51 < 89 < +++ < 8.



(1) a(S) is the ordered k-tuple
O‘(S) = [52 — 81,83 — 82,..., 8k — Skg-1,51 — Sk],

(note that sy — s will be negative, it must be replaced with n— s;+ si).
Then O(«(S)) = O(T) is the (n, k)-Oval with TAIS «(S) =T

Let T' = [ty ta- - - tx] be the TAIS of an (n, k)-Oval.
(2) B(T) is the increasing k-subset of Z,

B(T) = B([ty ta---tx]) = {0, t1,ts +to, ... s +ta+ -+t 1}

Remark 2.9  See similar definitions on p.221 of Beth, Jungnickel, and
Lenz [3].

Example 2.10 (n,k) = (15,6). For the (15,6)-Oval X of Example 2.5 with
TAIST =[432141] we have X =S = 3(T) = {0,4,7,9,10, 14}, then
a(X)="T.

Compare the following Theorem with Lemma 9.8, p.221 of [3].

Theorem 2.11  Let S and S’ be k-subsets of Z,,. Then S =. S if and
only if a(S) =cye a(5’).

Proof. Necessity: as usual let S = {s1,59,...,s,} where 0 < s1 < 59 <
... < spand «S) = [s2 — S1,..., 8k — Sk—1,51 — Sk]. Suppose S =, S’ then
there exists z € Z, with

S'=S+2 = {s1+2z,8+2,...,8+ 2}

= {si+z,841+2,...,Sk+2z,81+2,8+2,...,8%1+2}

where 0 < s; + 2 < 8,01 +2 < ... < s;_1 + z is an increasing sequence for
some ¢ =1,2,..., k. So
/
04(5) = [Si—l—l — Siye .y 81— SgyS2 — S1,.-4, 8i-1 _Si—2>5i_5i—1]
=cyc [82 —S81,..+,8i-1 — Si-2,8; — Si—1,Si+1 — Siy ..., 51 — Sk]

= «aS), as required.



Sufficiency: if a(S) =cye a(5’) then «(S’) is a cyclic permutation of «(S).

Without loss of generality let a(S) = [t1t2 -+ tx] and a(S") = [titiz1 -+ tety -+

for some i = 1,2,..., k. Then B(«(S)) = {0,t1,t1 +to, ..., t1+ - +tr_1}
and

Bla(S) = {0,ti,ti4+tipr,. . i+ +tp+t1 4+ +tia}
= Ba(S)+ (ti+ -+ tr)
=. B(a9)).
So B(a(S") =. B(a(S)), but from Definitions 2.8 we have [F(a(S)) = S —
s1 =, S for any S, and so S =, S’ as required. O

Theorem 2.12  Let a= : 82 (n, k) < T2 (n, k) be given by a=([S]) <
[a(S)]. Then a= is a bijection, and |SZ_(n, k)| = |12 _(n,k)|.

=cyc

Remark 2.13  Geometrically speaking, if two TAIS’s T"and T” are cyclically-

equivalent, then the Ovals O(T") and O(T”) can be ‘moved’ to one another
in the plane using translations and rotations, a reflection is not required; we
write O(T') = O(1"). The converse is also true. Thus T" =, 7" if and only
it O(T) = O(T").

Definitions 2.14  O*(n, k), O(n, k)

(1) O*(n,k) is the set of (n,k)-Ovals equivalent up to translations and
rotations.

(2) O(n, k) = |O*(n,k)| is the number of (n, k)-Ovals equivalent up to
translations and rotations.

Each Oval in O*(n, k) has associated with it an equivalence class [T in
7 (n,k), and conversely each equivalence class [T] in 72 (n,k) gives an
Oval O(T) in O*(n,k). So O(n,k) = |7 (n,k)|. This function is well-
known to be the number of necklaces of size n with k& white and n — k
black beads; for an explicit calculation of O(n, k) see p.468 of Van Lint and
Wilson [10]. Thus, letting ged(n, k) denote the greatest common divisor of
n and k, and ¢(z) denote Euler’s totient function, we have the following.

Theorem 2.15  Forn > 2 and k > 2, the number of (n, k)-Ovals is

omn -1 > o) 1)

d|ged(n,k)

e al3s

tio1]



2.1 Multipliers, generating all (n, k)-Ovals

We wish to generate all Ovals in O*(n, k). To do this we find a representative
of each equivalence class [S] in SZ_(n, k) and then use Theorem 2.12 to find
a representative of each equivalence class [T in 72 (n, k).

Definitions 2.16  multiplier m and mult(S), mult(O)
Let S be a k-subset of Z,,:

(1) m € U(n) is a multiplier of S if S =, m.S, i.e., if there exists z € Z,
with S = mS + z. The set of multipliers of S is mult(S).

Let O(T) be a (n, k)-Oval with TAIS T":

(2) m € U(n) is a multiplier of O(T) if m is a multiplier of S = 3(T"). The
set of multipliers of O(T') is mult(O(7T)) = mult(5).

Remark 2.17  See Chapter VI of [3] for examples of how multipliers are
used in the theory of Cyclic Difference Sets; see also Section 5 of this paper.
The set mult(S) is a subgroup of U(n), and if S =, S’ then mult(S) =
mult(S’). Let T and 7" be two different TAIS of an (n, k)-Oval O. Then
T =¢ye T" and so B(T') =, B(1") by Theorem 2.11, and then mult(8(T")) =
mult(5(7”)). Hence mult(O) is independent of the TAIS of O.

Example 2.18 (n,k) = (15,6). For the (15,6)-Oval X of Examples 2.5
and 2.10 we have X = {0,4,7,9,10,14} and so mult(X) = mult(X) = {1},
the trivial group. For an example of a 6-set of Z;5 with non-trivial multiplier
group consider Y = {0,1,4,7,10, 13}, here mult(Y) = {1,4,7,13}.

Now m € mult(S) if and only if S =, mS. Hence the number of z-
inequivalent sets in {uS : u € U(n)} equals the index of mult(S) in U(n),

i.e., equals [U(n) : mult(S)| = |rr|1(1J11(tT(L3S!)|'

As an example of how to generate all Ovals in O*(n, k) we generate all
Ovals in O*(7, 3).

We have U(7) ={1,2,3,4,5,6} and so |U(7)| = 6.

Start with A = {0,1,2}. So mult(A) = {1,—1} and |U(7) : mult(A4)| = 3.
The 3 cosets of mult(A) in U(7) are mult(A), 2mult(A), and 3mult(A).
Hence the 3 z-inequivalent sets in {uA : u € U(n)} are A1 = A, Ay = 2A =
{0,2,4}, and A3 =34 ={0,3,6} =, {0,1,4}.

10



Then choose A" = {0,1,3} from S*(7,3)\([A1] U [A2] U [A3]). We have
mult(A’) = {1,2,4} and |U(7) : mult(A’)| = 2. The 2 cosets of mult(A’)
in U(7) are mult(A’) and 3mult(A’). Hence the 2 z-inequivalent sets in
{uA":u e U(n)} are A} = A" and A, =3A"={3,5,6} =, {0,1,5}.

Now S*(7,3)\([41] U [As] U [A3] U [A]] U [AL]) = 0, so we stop. See
Example 2.19.

Example 2.19 (n,k) = (7,3). Equation (1) gives O(7,3) = |72 (7,3)| =
16(1) (;) = 5. Representatives of the 5 equivalence classes in both S (7,3)
and ’Tz*cyc(7, 3), and the bijection between them, are given in the table be-
low. The 5 (7,3)-Ovals up to translations and rotations are O*(7,3) =
{O(T1),0(Ty), O(T3), O(Ty), O(T5)}, see Fig. 4 below. We will see that mul-
tiplier —1 plays an important role in this paper. We use ‘A;’ for a set with
multiplier —1, and ‘B;’ for a set without multiplier —1.

S T mult(S) | 2o
A ={0,1,2} & Th=[115] {1, -1} 3
Ay =1{0,2,4} — Tpy=[223]|{1,-1}
A3 =1{0,1,4} — T3=[133]|{1,-1}
B ={0,1,3} T4_ 124 | {1,2,4} | 2
Bo={0,1,5} < Ty=[142]]{1,2,4}

congruent

A EH AR

O([1 1 5)) oO([223)) O([1 3 3]) O([1 2 4]) O([2 1 4])

Figure 4: The O(7,3) =5 (7,3)-Ovals up to translations and rotations. The
last 2 form a congruent enantiomorphic pair.

11



It is clear how to generalize Example 2.19 to generate all Ovals in O*(n, k),
i.e., all (n, k)-Ovals up to translations and rotations, for an arbitrary (n, k)
starting with A = {0,1,...,k — 1}.

12



3 Multiplier —1, reversible 7', congruent Ovals,
various counts

In this Section we consider multiplier —1 of an (n, k)-Oval O. We will return
to consideration of multiplier —1 in Section 5.

Let T'=[t1 ta -+ tg] be a TAIS of an (n, k)-Oval O.

Definition 3.1 7(:: [tk tg—1--- t1] is the reverse of T

Lemma 3.2  Let S and S’ be k-subsets of Z,,. Then

(i) a(=8) Zeyea(S).

—

(i1) S =, =S" if and only if a(S) =cycr(S").

Proof. (i) Let S = {s1,82,...,Sk}, where 0 < 51 < 89 < -+ < 8. Then
—S ={-s1,—89,...,—Sgt = {n —s1,n—5S9,....,n— S} = {n — sp,n —
Sk—1,...,N — Sg,n— 81}, in increasing order. So a(—S) = [sp — Sk—1,..., 52—
—
S1,81 — sk] =cyc [51 — Sk, Sk — Sk—1,--.,52 — 51] :Oé(S)
-

(ii) Necessity: let S =, =S’ then a(S) =cye a(—95") =cycr(S’) using Theo-
rem 2.11 and then part (i) above.

Sufficiency: let a(S) =cyea(S’) then a(S) =cye a(—95") by part (i) applied to
S’, and so S =, —S’ by Theorem 2.11. O

Definition 3.3  TAIS T is reversible if it is cyclically-equivalent to its
reverse, i.e., if T=cy. T, (equivalently, T' € [T} or Te [T]).

Theorem 3.4  Let S be a k-subset of Z,,. Then —1 € mult(S) if and only
if a(S) is reversible.

Proof. Now —1 € mult(S) if and only if S =, —S, if and only if
a(S) =cyear(9), if and only if a(5) is reversible. O

Definitions 3.5 O(n, k;—1), O(n, k; —1)

13



(1) O(n, k; —1) is the number of (n, k)-Ovals with —1 as a multiplier.
(2) O(n, k; —1) is the number of (n, k)-Ovals without —1 as a multiplier.

A Ek-reverse of n is a reversible k-composition of n. In McSorley [6]
using Polya Theory we count the number of k-reverses of n up to cyclic
permutation; this number is denoted by R=(n, k). From Theorem 3.4 above
we have O(n, k; —1) = R=(n, k).

Theorem 3.6  Forn > 2 and k > 2, the number of (n, k)-Ovals with —1
as a multiplier is

\
3
[ ol]
=N

), if n is even and k is odd;
), if n is odd and k is odd;

if n is even and k is even;

3 =
| N
-

>
| N
—_

O(n, k;—1) =

| ~—N

EINJEN B
=

e e N N N

), if n is odd and k is even.

,
Nlt‘l\)‘

For a given TAIS T" we obtain Oval O(j(:) from Oval O(T') by reflecting
O(T) in a straight line that (for simplicity) does not intersect O(T"). We
denote the reflection of O by 6

When Ovals O(T") and O(j(:) cannot be moved to one another using only

translations and rotations, we say they are enantiomorphs of each other. In
this case O(T') # O(T) and a reflection is required to move O(T') to O(T)

and vice-versa. (Oval O(T) is congruent to O(%); see Section 3.1.) These
comments and Theorem 3.4 give the following.
Theorem 3.7  Let O(T) be an (n, k)-Oval.
(i) O(T) has multiplier —1 if and only if T is reversible, if and only if
o(r)=0(T).

(ii) O(T) does not have multiplier —1 if and only if T is not reversible,
if and only if O(T) # O(%) Such Ovals occur in {O(T),O(j(_ﬂ)}
(congruent) enantiomorphic pairs in O*(n, k). (Hence there is an even
number of QOuals in O*(n, k) without multiplier —1.)

14



Example 3.8 (n,k) = (7,3). See Example 2.19.
O*(7,3) ={O(T1),O(T,), O(T3),O0(Ty), O(Ts)}, and Theorem 3.6 gives
O(7,3;-1) = (}) = 3.

If i = 1,2, or 3, then —1 € mult(O(T;)) and so T;=cyc i-; eqg., for 1 =1
we have [1 1 5]=ee[5 1 1](=[1 1 3]).

If i =4, or 5, then —1 & mult(O(T;)) and so T; Feye i-; eg., for i = 4 we
have [1 2 4] Zeo[4 2 1](=[1 2 4]).

The pair {O(Ty), O(Ts)} = {O(T}), O(ﬁ)} is a (congruent) enantiomor-
phic pair referred to in Theorem 3.7(ii).

3.1 Congruent Ovals

Definitions 3.9 congruent and =,

(1) Two k-subsets S and S’ of Z, are congruent, S =. S', it S =, S’ or
S =, -5

(2) Two TAIS T and 1" are congruent, T’ =T, it T =cyc T" or T =cy.T".

(3) Two (n, k)-Ovals O and O’ are congruent, O =. O, if O = O’ or O =0,
i.e., if O can be moved to O by a sequence of translations, rotations,
or reflections, (isometries).

Then, from Theorem 2.11 and Lemma 3.2, we have the following.
Theorem 3.10  Let S and S’ be k-subsets of Z,. Then S =. S’ if and
only if a(S) =. a(S"), if and only if O(a(S)) =. O(a(S")).

Definition 3.11  Mult(S) = mult(S) U — mult(5).

Remark 3.12 It is straightforward to show that Mult(S) is a subgroup
of U(n). If =1 € mult(S) then Mult(S) = mult(5), and if —1 ¢ mult(5)
then |[Mult(S)| = 2 |mult(.S)].

Definitions 3.13 O} (n, k), O.(n, k)

15



(1) O (n, k) is the set of (n, k)-Ovals up to congruency.
(2) Oc(n, k) = |O%(n, k)| is the number of (n, k)-Ovals up to congruency.

In order to generate the set Of(n, k) for an arbitrary (n, k) we may use
the procedure in Section 2.1 to find O*(n, k) and then combine congruent
enantiomorphic pairs of Ovals; see Theorem 3.7(ii). Alternatively, we may
use this procedure with the group mult(S) replaced by Mult(5).

Example 3.14 (n,k) = (7,3). See Examples 2.19 and 3.8.

To find O(7,3) using the first method mentioned above we start with
O*(7,3) ={O(TY), O(T), O(T3), O(Ty), O<T4)} and combine the last 2 Ovals
into a single congruency class to give OX(7,3) = {O(11), O(1»), O(T5), O(T}4)}.

Using the second method, the procedure of Section 2.1 with mult(S)
replaced by Mult(.S) gives the following table:

S T Mult(S) | gy
A=1{0,1,2} < Ti=[115]{1,-1}] 3
Ay =1{0,2,4} « T,=[223]| {1,-1}

A3 =1{0,1,4} — T3=[133]] {1,-1}
B ={0,1,3} < T,=[124]| U®) 1

This also gives O¥(7,3) = {O(T1), O(T3), O(T3), O(Ty)}, the set of all (7,3)-
Ovals up to congruency.

3.2 On, k), Ocn,k;—1), and O.(n,k;—1)

Definitions 3.15  O.(n, k; —1), O.(n, k; —1)

(1) Oc(n, k;—1) is the number of (n, k)-Ovals with —1 as a multiplier, up
to congruency.

(2) Oc(n, k; —1) is the number of (n, k)-Ovals without —1 as a multiplier,
up to congruency.

Lemma 3.16

Ou(n. k) = %(O(n, B+ Oln. k1)),

16



Proof.
Oc(n, k) = Odn,k;— )+ O, (n,
= O(n,k;—1)+ O(

%(om, B~ On s ~1)

— %(O(n, k) + O(n, k; —1)).

= O(n,k;—1)+

At the second line we use O(n,k;—1) = O.(n,k;—1) because if O and
O’ both have —1 as a multiplier then, from Definitions 3.9(3) and Theo-
rem 3.7(i), we have O = O’ if and only if O =. O’. And O.(n, k; —1) =
5O(n, k; —=1) comes directly from Theorem 3.7(ii). O

Recall that O(n, k) is given explicitly in Equation (1).

Theorem 3.17  Forn > 2 and k > 2, the number of (n, k)-Ovals up to
congruency 1S

~

%(O(n, k) + (g)), if n is even and k is odd;
1 N VI ' :
o {Hou G ottt
2 ’ k)] )
\%(O(n, k) + (%)), if n is odd and k is even.

Theorem 3.6 now gives the following.

Theorem 3.18  Forn > 2 and k > 2, the number of (n, k)-Ovals without
—1 as a multiplier up to congruency is

~

%(O(n, k) — (j)) if n is even and k is odd:
L R M A
L(O(n, 2)), :
HDE (_)) if n is odd and k is even.




Table 1: Values of O.(n, k), O.(n,k;—1), and Oc(n,k;—1) for 2 < k <n <
10, and of O.(n), O.(n; —1), and O.(n; —1) for 2 < n < 10.

See Table 1(a). The triangle of values of O.(n, k) when read row-by-row
gives sequence A052307 in the Online Encyclopedia of Integer Sequences [7].

See Table 1(b). The triangle of values of O.(n, k; —1) = O(n, k; —1) (see
Theorem 3.6) is equal to the triangle of sequence A119963 in [7] (with the
first two columns of 1’s removed). So O.(n,k; —1) gives the first combi-
natorial interpretation of sequence A119963 in [7]. Thus (ignoring the first
two columns of 1’s) the (n, k) term in the triangle of sequence A119963 is
the number of (n, k)-Ovals with —1 as a multiplier, up to congruency. For

18

k]2 3 4 5 6 789 10]0.(n)

2 |1 1

3 /11 2

4 121 1 4

5 (221 1 6

6 (333 1 1 11

71344 3 11 16

8 458 5 4 11 28

9 |471010 7 411 44

10 |58 16 16 16 8 5 1 1| 76

(a) Oc(n, k)

n\k|2 3 4 5 6 789 10/Oc(n;—1)|[n\k[2 34 5 6 7 8 9 10| Ou(n;—1)
2 |1 1 2 10 0
3 (11 2 3100 0
4 121 1 4 41000 0
5 1221 1 6 51000 0 0
6 (32311 10 6101000 1
7 (333311 14 710110 00 2
8 |43 6 3 4 11 22 810222000 6
9 (446 6 4 411 30 91034 43000 14
10 (54106 10451 1 46 10046106400 0 30

(b) Oc(n, k; —1) (c) Oc(n, k; —1)




the sequence of row sums of the triangle of sequence A119963 see sequence
A029744, and the comment ‘Necklaces with n beads that are the same when
turned over’.

See Table 1(c). When the triangle of values of O.(n, k; —1) is read row-by-
row we obtain a new sequence, see sequence A180472 in [7]. For the sequence
of row sums of this triangle see sequence A059076: ‘Number of orientable
necklaces with n beads and two colors; i.e., turning over the necklace does
not leave it unchanged’.

Example 3.19 (n,k) = (7,3). From Example 3.14 the number of (7,3)-
Ovals up to congruency is 4. Theorem 3.17 gives O.(7,3) = £(O(7,3)+ () =
s(5+3) = 4, also. Of these 4 Ovals, 3 have —1 as a multiplier, and 1
does not. Theorem 3.6 gives O.(7,3;—1) = (‘z’) = 3, and Theorem 3.18

gives 0.(7,3;=1) = 2(0(7,3) — (})) = 1(5—3) = 1. Thus all counts for

2
(n, k) = (7,3) from Example 3.14 are confirmed.

4 Rhombic Inventory Vector, all (n, k)-Ovals
for n < 10

We use C,, to denote containment in multisets. For example, if multiset
M = {1,1,1,2,3,3,4,4,4,4} then L = {1,1,1,2,4,4} C,, M but L' =
{1,1,1,2,2} &,, M. We say that L is a multisubset of M. Further, we
replace a,a, ...,a by a®, so M = {13 21,32 4}
b
On p.141 of Ball and Coxeter [1] it is proved that every (n,k)-Oval O,
with 2 < k < n, can be tiled by a multiset of (S) rhombs chosen from

PLy P25+ P2

The regular 2n-gon, {2n}, is an (n,n)-Oval with TAIS=[11 --- 1].
—_——

n

Definition 4.1  The Standard Rhombic Inventory, SRIs,, is the multiset
of (3) rhombs that tile {2n}.

There are | 5] different shapes of thombs in SRI,; see Section 2. When

n is odd, SRI,, contains n copies of each of the 22 = | 2| shapes of rhomb,

19



1 P2, s Prct When n is even, SRIy, contains n copies of each of the § —1
non-square rhombs, p1, ps, ..., pa_1, but only 7 copies of the square pz.

For a fixed (n, k)-Oval O let A\, equal the number of rhombs in O with
principal index h.

Definition 4.2 The Rhombic Inventory Vector (RIV) of Oval O, RIV(O),
is the vector (A1, Ag, ..., Az) of length |3 ].

The sum of the components in RIV(Q) equals (S)

Example 4.3 (n,k) = (15,6). See Figs. 1 and 3. The (15,6)-Oval X is
tiled by (g) = 15 rhombs. The rhomb p, occurs twice in X', so A\y = 2. We
have RIV(X) = (2,1,2,2,4,2,2).

The RIV of an (n, k)-Oval can be derived from its TAIS by constructing
its Oval Index Triangle, (OIT). The construction of an OIT is described
below for our (15,6)-Oval X.

First we define the function r : Z,\{0} — Z,\{0}:

r(a):{a ifa < |2,

—aorn—a ifa>|%].

We extend the definition of r to multisets M as follows: (M) = {r(a)|a € M}.

(2)

3 I3

The TAIS for X is [4 32 1 4 1]. To compute RIV(&X):

(i) Delete the last turning angle index from the TAIS, thereby obtaining the
sequence of indices for the upper interior face angles of the rhombs in
the receptacle— the cluster of £ — 1 rhombs that are incident on the
stem vertex of the Oval. (‘Receptacle’ is the term used by botanists to
denote the part of a plant that holds the fruit.) We call this sequence
the ‘truncated TAIS’. The truncated TAIS for X is [4 3 2 1 4].

(ii) The first row of the OIT equals the truncated TAIS. Below each pair of
consecutive indices in the first row enter their sum in the second row:

4 3 2 1 4
7 5 3 5
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(iii) Let h;; denote the index in row ¢ and position j of the triangle, where
1>3,and j =1,2,...,k—1, counting from the left. Now the indices at
each interior vertex of an (n, k)-Oval sum to 2n, so simple trigonometry
gives:

hiv1; = hij =+ hij — hici .

See the left-hand triangle in (iv) below.

(iv) Apply function 7 to the indices of the left-hand triangle, i.e., replace
index h > [ 5] by n — h. The OIT is now complete.

4 3 2 1 4 4 3 2 1 4
7 5 3 5 7 5 3 5
9 6 7 N 6 6 7
10 10 5 5
14 1

OIT

(v) Now count the frequency of each principal index in the OIT to obtain
RIV(X) = (2,1,2,2,4,2,2), as above.

Recall the definition of a(S) from Definitions 2.8(1).

Definitions 4.4  §(5), OIT(a(S5)) or OIT(T)
Let S = {s1,892,...,8k} C Z,.

(1) 0(S) ={sj—si: 1 <i < j<k}isa multiset of non-zero differences of S.
Note that |§(.5)| = (g)

(2) OIT(«(S)) = OIT(T) is the multiset of indices in the OIT with first
row [S2 — $1,83 — S2,..., Sk — Sk—1], the truncation of a(S) = T.

Lemma 4.5 Let S = {s1,82,...,8x} C Zyn. Then OIT(a(S)) = r(5(S)).
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Proof.  Consider the triangle formed previously with h;; as the index in
row ¢ and position j, counting from the left, and let H denote the multiset
of all such h; ;.

Weshow fori =1,2,...,k—1,and j = 1,2,... , k—ithat h; ; = s;4;—s; €
5(9), i.e., that the indices in row i of this triangle are the difference of two
s’s € S whose subscripts differ by 1.

By definition of the triangle this is clearly true for ¢ = 1,2. Assume that
the hypothesis is true for rows 1,2,...,4. Then, for : > 3:

hivij = hij+hij — hic1j4

(8it5 = 85) + (SixGi+1) — Sja1) = (S—1)+(j+1) — Sj+1)
= S@+1)+5 — 8j € 0(5),

using strong induction at the second line. Hence the induction goes through,
and H C,, §(S), but |H| = (g) =10(5)|, and so H = §(5). Now apply 7 to
both sides of this equation to give the result. O

Example 4.6 (n,k) = (15,6). Our (15,6)-Oval X has TAIST =[432141].

So X = B(T) = {0,4,7,9, 10, 14}, giving 6(X) = {11, 21,32, 42,52 6!, 72,01, 102, 14},
and r(5(X)) = {12,2',32,42 5 62,72}, So RIV(X) = (2,1,2,2,4,2,2), as

above.

Remark 4.7 It is straightforward to show that the multiset OIT(T") doesn’t
depend on how we truncated T to form the first row of the OIT.

4.1 All (n,k)-Ovals and their RIV’s for n < 10

In Tables 2 and 3 below we list and number all (n, k£)-Ovals up to congruence,
and their RIV’s, for 2 < n < 10. We refer to these Ovals by their numbers
in later Sections.
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|0; k] TAIS | RIV |

o213 [0
|O; [ k] TAIS [RIV | Oy]21][22] 0, 1)
| Oi [k[TAIS[RIV] O 212 () 053112 [(2, 1)
[ O 2][11] [(1) ] O, [3[[111]](3) O, 4[[1111][(4 2

n=2 n=3 n=4

10; k] TAIS | RIV |

O [2][L 6] 1, 0, 0)

Oy 2|2 5] (0, 1, 0)

O3 |23 4] (0,0, 1)

O, [3[[115] (2,1, 0)

1O; [k]| TAIS | RIV | |05 |3|[124] (1,1, 1)

O [2][1 5] (1,0,0)] |06 [3][133] (1,0,2)

Oy |22 4] (0,1,0)| |07 [3][223] (0, 2, 1)

03 |2|[33] (0,0,1)] [Og [4][T114] (3,2, 1)

O, [3[[114] (2,1,0)] |0y |4][1123] (2, 2, 2)

[0i [K[ TAIS [RIV] |0, [3[[123] (1,1,1)] |O0]4][121 3] (2,1, 3)

O 21 4] 1,0)] |0s [3][222] (0,3,0)] |Onl4][1222] (1, 3, 2)

O[22 3] 0. 1) [0; [a[1113 3.2 D] [Onl5L 1113 (43 3)

Os[3[[113] |1 |0s |4|[1122]  [(2,3,1)] |O|5|[11122] |(3,4,3)

O3[[122]  [(1L2)]| |09 |4|[1212] [(2,2,2)] |Ow|5|[11212] |(3.3,4)

Os[4[[1112] [(3.3)]| [Ow|5|[11112] [(4,4,2)] [O]6[[111112 [(55,5)

O 5] [11111][(5,5)] [011]6][111111]](6,6,3)] [Ow 7| [L111111](7,77)

n==5 n==~6 n="7

Table 2: All (n, k)-Ovals up to congruence and their RIV’s for 2 <n < 7.

5 Magic Ovals, cyclic difference sets, multi-
plier —1, all magic (n, k, \)-Ovals for n < 40

Recall S = {s1,59,...,8k} C Zyp, and 7 : Z,\{0} — Z,\{0} from Equation
(2), and §(S) from Definitions 4.4(1); let M be a multiset with elements from
Z,\{0}. We need two more definitions.

Definitions 5.1  fi(a), A(S)
(1) fam(a) is the frequency of a € M.
(2) A(S) =0(5) U —4(5) is the multiset of non-zero differences of S.

23



%

|

0
1
0
0

cocooHcoo—
Plloss=slesaaasa]
FllosHosls s -dxl

S S SSlE A S ST

OO oo INAA OO

R i o e e e e
CO——HO— O~~~ ONO~A

N ANNNNA—AA—ATNAANO OO
NSNS A

I~~~
O —HONN—O—HNN—O

FTOMMNANNNANN——ANNO
NN NN NN AN NP |

R i e e e e T e o |
HEHAANNNNNN N AN ANM

WMHFFFONFFONONNFNANN
PSPPSR NN AN |

I~~~
NAANNNNANMMHMM

1

5

5

4

4

5

4

6

6

6

7

6

6
(8,38, 8, 8, 4)

O H 0 < < F - © © © ©
NP

(10, 10, 10, 10, 5)

[—]

[~

NN NN |~

FOMAMANNN[HN—~ —~ ||~

m WFNFONNFONNNMNANNANAN—ANN |~ ||~
A OO FIOOFNOANFNFNNANFNAN[HANN NN AN AN AT ANN[A~A NN~~~ N[~ [ [
T I~ O FOFNANDFNHFONANN NN FAANANNANN AN A A ANANNN—A A ANN—ANN—A|A—A A= NN~ =~ N[
OO OMFH[AHNNFANMNFD AN NN AANANANNNN A ANANNNAN[AAA A" NNNNNN—A—AN[AA A A A A NN~~~ ||

O~ OWHAMNFANMNFENAHAAAANANANANNNMONFANNNAAAAA A A A A ANANANANANNN|AAA A A A A A A A A A AN NN [A |~~~ [ [
A NN A AAANANNNA A A A A A A A A A A A NANNfA—A A —AA A A A A A A A A A" N|A A A A A A A A A A A A A A A A A A A o A [
-2 22222333333334444444444444444_Ororo_O_O_O_Ordrdrdrdrdrdrdrdro666666666666666677777777888889w
|| 01234)F78901234)678901234)678901234~DF78901234)F78901234r&678901234)6
S| A NN D O~ 0D A A o AANANANANANANANANNNNNONNNNNNF o F10101010101010101010 O QY © © © © © OO QNN
o) OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
~ ] —~]

O OO HIOO AN A1 OO AN AN ——MANAANANMMOANFANMMMNMMN < FL10<HFMONLO L1010 O~
Slocc- oo M a NN ASN NN NNS NS BN e S id S|~ |S]
FHll &« o & @6 ¢ 6 6 6 6 6 @6 6 6 6 6 6 6 6 6 6 6/ 6 6 6 6 6 6 6 6 6@ @8] 6 6 6 e e e el o e e al oq A
R Or—HOOOIHHO O AN HOIANANH AN —NO—HMMMAANMM—AANHFFIMNMIOMN HFNONLO O L1010~
F OO N A A OSSN ANNNA—A AN~ O[FNN A NN NN — 10 < o <f o o3]S 165165165 [ ||
Rl D e el Bl g D gy [ g

— |

N | —

AN A |

leu MO M ANM NN A | [
< WO FMNOFHFMOANMMN MO AN AN A [~ — O [
& QIO FNO AN NN NN~ AN~ N~ NN~ — |~ — |
O FHIOFNIHANAMN NN HFA AN A NN NN~~~ NN |~

O~ O ANNFANMMN AN ANNNNDNDAN |~ A A=A — NN~ — |~ — ||

— AN H|r—A o = NN )| o o O o e e ] o o [ o o e ] [ o | [

RN AN MMMOMN IR H OO IO IO 1O IO OO IO 1O (O © © © O © O |~~~ D0
O =H N M < 0 © M~ 0 OO H M F 0 © - 0D D O D~ 0 oo O~ N ;M <
S[SSSSESSSSSSITSSSSSSSSSIESSSSSSSSSESSSSSIESSSSIS
~— ]~~~ [~~~ ] ]

OO —HI OO OO A O NN — NN —NANNM|<H

Sloc " Sc- S AaNlHIaNNMNS|N oo << < <[ S|o0]

Pl 6 6 6 @ ¢ 6 6 6 6o & 6 6 6 6 6 6 a6 e e aa & e o A A -

R Or—HOO|IH—ONHANAN = ANNO<FMMNmANFM|<HLO < <H|©O|0

A OO |lN A OSMmMANNN A NS |[F M NN < < <[5 |0

el I i I D g I Py |

| —

MM AN AN |

leu MMM NN N~ [

< DN NN~ N — NN | — N [ [

= QIO <FFN NN NN~ N~ NN |~ O [

NOL | N MAN M |—A—A — NNNA|— — — r — — — |[ [

— AN <H|rA A~ AN A~ o~~~ A [ | — [

RN NN HFH<HFNLOLO L1010 1O O © © ©O(b~|0

O = AN M F 0 O Do OO — N M O b~ o0
S|SSSSIFSSIS|TTTFTSFIFITSS OIS SIS

n =10

s for 8 <n < 10.

Table 3: All (n, k)-Ovals up to congruence and their RIV’
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Note that —3(S) = {si—s; : 1 <i < j <k}, and |—6(S)| = [6(5)| = (),
and |A(S)| = k(k —1).

Lemma 5.2 Let M be a multiset with elements from Z,\{0}. Thenr(M) =
r(—M).

Proof. Let n be even. Consider an occurrence of a € M.

Suppose a < |5|. First, if a = § then r(a) = 5. Now —a = § € —M
and r(—a) = § also. Thus element § € M ‘contributes’ the same element 3
to both multisets 7(M) and r(—M). Second, if a < | %] then 7(a) = a. Now
—a € —M satisfies —a > [§] so r(—a) = —(—a) = a. So, again, element
a € M contributes the same element a to both r(M) and r(—M).

Suppose a > |3 ]. Then r(a) = —a. Now —a € —M satisfies —a < | 5] <
| 5] so 7(—a) = —a. Thus, element a € M contributes the same element —a
to both r(M) and r(—M).

In conclusion, any occurrence of a € M contributes the same element to
both multisets (M) and r(—M). Thus r(M) = r(—M). The proof for odd

n 1is similar. O

Definition 5.3  The Short Frequency Vector (SEV) of r(M) is the vector
(froan(@)s fran(2)s -, fran([3])) of length [3].

Remark 5.4  From Lemma 4.5 we have RIV(O(a(S5))) = SEV(r(6(5))).

Example 5.5 (n,k) = (15,6). See Example 4.6. Here X = {0,4,7,9, 10, 14}
C Zus and §(X) = {11,21,3%,42, 52,61, 72,91, 102,141}, and

r(6(X)) = {12,2',32,4%,51 62, 7?}. So RIV(O(a(X))) = SFV(r(6(X))) =
(2,1,2,2,4,2,2).

Lemma 5.6  Let S C Z,. Then SFV(r(A(S))) =2 x SEV(r(4(S))).

Proof. Now A(S) = §(S)U—=4§(S), and so (A(S)) = r(5(9))U—r(6(5)) =
r(0(S5)) Ur(0(S)) using Lemma 5.2. Hence for any a € r(6(S)) we have
fray(@) =2 X frssy(a), and so the result. O

Example 5.7 (n,k) = (15,6). See Example 5.5. Again, X = {0,4,7,9, 10, 14}
C Zns and A(X) = {12,22,3% 4%, 5% 62,74, 92,10, 142}, and

r(A(X)) = {14,2%, 31,41, 5% 6%, 7'}, So SFV(r(A(X))) = (4,2,4,4,8,4,4) =
2x(2,1,2,2,4,2,2) = 2x SFV(r(6(X))).
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5.1 Magic Ovals and cyclic difference sets

Definition 5.8 A (n, k, \)-cyclic difference set — (n,k, \)-CDS — is a k-
subset D C Z,, with the property that A(D) contains every non-zero element
of Z,, exactly A\ times.

In a (n, k, \)-CDS straightforward counting gives:
An—1)=kk-1), (3)
this shows that A is even if n is even.

Example 5.9 (n,k) = (7,3). D = {0,1,3} is a (7,3,1)-CDS. We have
(D) = {1,3,2} and —6(D) = {—1,-3,—2} = {6,4,5}, giving A(D) =
{11,213t 41 5t 61}

Recall that, when n is odd, there are n copies of each of the 5] distinct
rhombs in SRIy,, i.e., RIV({2n}) = (n,n,...,n,n), and, when n is even,
there are n copies of each of the § — 1 non-square rhombs in SRIy,, but only

5 copies of the square, i.e., RIV({2n}) = (n,n,...,n, 3).

Definition 5.10 A magic (n, k, \)-Oval is, for odd n, an (n, k)-Oval that
contains exactly A copies of each of the [%] distinct rhombs of SRly,, i.e.,
that has RIV= (A, A, ..., A\, \), and is, for even n, an (n, k)-Oval that contains
exactly A copies of each of the & — 1 non-square rhombs in SRIs,, but only

2
% copies of the square, i.e., that has RIV= (A, A, ...\ %)

The following Theorem 5.11 is a main result, it proves equivalence of a
magic (n, k, A\)-Oval and a (n, k, \)-CDS.

Theorem 5.11 Let S = {s1,82,...,8x} C Z,. Then O(a(S)) is a magic
(n, k, \)-Oval if and only if S is a (n,k, \)-CDS. Moreover, A is equal to the
number of 1’s in TAIS a(95).

Proof. Necessity: let O(a(S)) be a magic (n, k, \)-Oval.

For odd n: for each h = 1,2,...,[%], there are A occurrences of h in
OIT(«(S)) so, by the proof of Lemma 4.5, the multiset 6(S) contains A
occurrences from {h,n — h}. Suppose h occurs X times in §(S) then n — h
will occur A — X times in §(5), so h will occur A — X' times in —§(5). Hence
h will occur exactly A times in A(S) = §(S) U —46(S). For h = |2] +

2
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L [5] +2,...,n—1, we argue in a similar way with h replaced by n — h to
conclude that these h also occur A times in A(S). Now A(S) is the multiset
of differences defined by S; hence S is a cyclic difference set with repetition
number A, i.e., S is a (n, k, \)-CDS.

For even n: arguing as above each h # % occurs A times in A(S). Also
h =2 occurs 3 times in OIT(a(S)), i.e., 3 times in r(§(S)) and so 3 times
in 6(5), and thus A times in A(S) using Lemma 5.6. Hence, for even n also,
S is a (n,k,A\)-CDS.
Sufficiency: let S = {s1, s9,..., sk} be a (n, k, \)-CDS. So, for odd n, we have
SEV(r(A(S))) = (2,2, ...,2),2)), and, for even n, we have SFV (r(A(S5))) =
(2\, 2, ...,2\, ). Hence, from Lemma 5.6, for odd n, we have SFV (r(§(.5))) =
(A A, ..., A ), and, for even n, we have SEV(r(6(S))) = (A, A,..., A, 3). But
RIV(O(a(5))) = SFV(r(6(5))) and so O(«(5)) is a magic (n, k, A)-Oval.

Let g be the number of 1’s in TAIS a(S) = [s2 — $1,53 — S2,- -+, Sk —
Sk—1,51 — Sk). Recall that the elements in S = {s1, s9,..., s} are in increas-
ing order and satisfy 0 < s; < $s9 < --- < $g. There are A\ 1’s in A(S5);
hence there are A solutions to s; —s; =1 (mod n), where i, 5 € {1,2,..., k},
i#j. Nowif s; —s;=1or —(n—1)then j =i+ 1for 1 <i<k—-1,
or j =1 and i = k (respectively), and thus s; — s; is an element of «(.S5).
Hence p1 > A. Conversely, because there are p 1’s in the TAIS «(.S) and every
element of this TAIS is also an element of A(S), then < A. Hence A = p. O

Example 5.12

(a) The regular 2n-gon {2n} has TAIS=[1 1 --- 1], which contains n 1’s. It
——

is a magic (n,n,n)-Oval with corresponding (n,n,n)-CDS D = {0,1,...,n—

1}. For odd n we have RIV({2n}) = (n,n,...,n,n), and for even n RIV({2n}) =

(n,n,...,n, %).

(b) If we remove the right-hand strip of rhombs in {2n} we produce a magic

(n,n —1,n —2)-Oval {2n}’ with TAIS=[11 --- 1 2], containing n — 2 1’s.

1

For odd n we have RIV({2n}) = (n—2,n—2,...,n—2,n—2), and, for even

n, we have RIV({2n}) = (n — 2,n — 2,...,n — 2,%52). The corresponding

(n,mn—1,n—2)-CDS is D' = {0,1,...,n — 2}. See Fig. 5 for an example

with n = 12.

If we remove another strip of rhombs we obtain an (n, n—2)-Oval but only
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Figure 5: The regular 12-gon {12}, and the magic (6,5,4)-Oval {12} ob-
tained by removing the right-hand strip of rhombs from {12}.

non-integer values of A result from Equation (3), and so such an Oval is not magic.

(c) (n,k) =(7,3). See Example 5.9. The set D ={0,1,3} is a (7,3,1)-CDS,
and so O(«(D)) is a magic (7,3,1)-Oval with TAIS a(D) = [1 2 4], which
12

contains one 1. The OIT for O(a(D)) is 3 andso RIV(O(a(D))) = (1,1,1).
See the fourth (7,3)-Oval in Fig. 4.

(d) (n,k) = (15,7). See Fig. 6. The set D = {0,1,2,4,5,8,10} is a (15,7, 3)-
CDS. We have a(D) =[1 121 3 2 5], which contains 3 1’s, and the (15, 7)-
Oval O(«a(D)) is a magic (15,7, 3)-Oval with OIT

4 4 6 6 and  RIV (3,3,3,3,3,3,3).



\

11D

[/

Figure 6: The magic (15,7,3)-Oval O([1 121 3 2 5]).

Remark 5.13 The CDS’s D and D’ in Examples 5.12(a) and (b) above
are usually considered to be ‘trivial’ CDS; see p.298 of [3]. We ignore the
other two trivial CDS, namely () and {s;}, because k > 2. Thus non-trivial
magic (n, k, \)-Ovals have 2 < k <n — 2.

Both these trivial CDS’s have mult(D) = mult(D’) = U(n), so both
have —1 as a multiplier. Let D be a non-trivial (n,k, \)-CDS. Then it is
combinatorial folklore that —1 is not a multiplier of D; see the discussion on
p.60 of Baumert [2]. Thus —1 is not a multiplier of the non-trivial magic
(n, k,\)-Oval O(a(D)). Then Theorem 3.7(ii) gives Theorem 5.14 below
which is a geometrical interpretation of this fact.

Theorem 5.14  Let O(a(D)) be a non-trivial magic (n, k, \)-Oval. Then
—1 is not a multiplier of O(a(D)), so O(a(D)) # O(a(—D)) and
{O(a(D)), O(a(—D))} is a congruent enantiomorphic pair in O*(n, k).

Example 5.15 (n,k) = (7,3). See Examples 3.8 and 5.12(c). The (7, 3)-
Oval O(a(D)) with D = {0, 1, 3} is a non-trivial magic (7, 3, 1)-Oval, so —1 ¢
mult(O(a(D))) and {O(a(D)),O(a(—D))} is a congruent enantiomorphic
pair in O*(7, 3).

To the end of this Section we assume our CDS’s are non-trivial.
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Definition 5.16 A (n,k, \)-CDS is planar if A = 1.
We now give a new proof that —1 is not a multiplier of a planar CDS.

Theorem 5.17 Let D be a planar (n,k,1)-CDS with k > 3. Then —1 &
mult(D).

Proof. Let T'= «(D) = [t1 t2 --- tg] be the TAIS of O(«(D)). Then
O(«a(D)) is a magic (n, k,1)-Oval. Suppose that two parts of T" are equal,
say t; =tj =hfor1 <i<j<kand1l <h< L%J Now form OIT(T)
using any truncated TAIS containing both ¢; and ¢;, this is possible because
k > 3. Then OIT(T) will contain at least 2 copies of rhomb py,, i.e., Ay > 2
in RIV(O(«a(D))), a contradiction because A = A, = 1. So the k parts of
T = [ty ta --- ti] are distinct.

Suppose that T is reversible, so T Ecyc% where %: [tk ti—1--- t1]. Now,

because the parts of T" are distinct, we have %Ecyc [t1tr -+ to] = [t ta -+ i),
so t = t9, a contradiction. Hence T is not reversible, and, by Theorem 3.4,
we have —1 ¢ mult(D). O

5.2 All magic (n, k, \)-Ovals, n < 40
See p.2 of Baumert [2].

Definition 5.18  Two k-subsets S and S’ of Z,, are (u,z)-equivalent, S =, .
S’ if there exists u € U(n) and z € Z, such that S = uS’ + z.

Table 6.1, p.150 of [2] contains a complete list of the 74 (n, k, A) triples
with & < 100 for which a (n, k, \)-CDS exists, with at least one example of
such a CDS for each triple.

Moreover, for the 12 (n,k, A) triples with n < 40, see our Table 4 be-
low, the (n,k, A\)-CDS examples in Table 6.1 of [2] are all the examples
up to (u, z)-equivalence. To confirm this statement for these 12 triples see
Hall [5]. As a double-check for the 8 triples: (7,3,1), (13,4,1), (15,7, 3),
(19,9,4), (21,5,1), (23,11,5), (31,6,1), and (37,9,2) see the explicit ex-
amples on pp.306-308 and p.327 of [3]. The remaining 4 triples: (11,5,2),
(31,15,7), (35,17,8), and (40, 13, 4) were also double-checked by the authors
using computer searches and Theorem 2.9 on p.306 of [3].
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Amongst these 12 triples, for just one triple, namely (31,15,7), there is
more than one inequivalent (n, k, A)-CDS: there are two inequivalent (31, 15, 7)-
CDS’s, these are labelled ‘31A” and ‘31B’ in Table 6.1 of [2], and ‘A’ and
‘B’ in our Table 4.

We stopped at n = 40 in our Table 4 to indicate that magic (n, k, \)-Ovals
with n even can occur.

Remark 5.19 Now —1 ¢ mult(D); hence Mult(D) = mult(D)U— mult(D)
and |Mult(D)| = 2 |mult(D)| from Definition 3.11 and Remark 3.12.

Example 5.20 (n,k) = (13,4). The unique (13,4,1)-CDS up to (u,z)-
equivalence is D = {0, 1, 3,9}.

We have mult(D) = {1,3,9} and Mult(D) = {1,3,4,9,10,12}. Now
|U(13)| = 12 so |U(13) : Mult(D)| = 2. A set of 2 coset representatives for
Mult(D) in U(13) is {1,2}. Then the 2 incongruent (13,4, 1)-CDS’s that are
each (u, z)-equivalent to D are D and 2D = {0,2,5,6} =, {0, 1,8,10}, with
corresponding TAIS’s [1 2 6 4] and [1 3 2 7] respectively. Thus there are 2
magic (13,4, 1)-Ovals up to congruency; see our Table 4.

A similar procedure applied to each (n, k, A)-CDS of Table 6.1 of [2] for
n < 40 produces our Table 4.

Example 5.21 (n,k) = (16,6). There does not exist a (16,6,2)-CDS;
see Example 14.20(a) on p.425 of [3]. So there does not exist a magic
(16, 6,2)-Oval, i.e., a (16,6)-Oval with RIV (2,2,2,2,2,2,2,1). Consider
the (16,6)-Oval © = O([L 1 2 15 6]). Then RIV(O) = (3,2,2,2,2,2,1,1)
which is the ‘closest’ that the RIV with Ay = 1 of a (16,6)-Oval can be to
(2,2,2,2,2,2,2,1), i.e., Oval O is the ‘closest’ that a (16,6)-Oval with one
square rhomb can be to a magic (16, 6,2)-Oval. Oval O has A\; = 3 (instead
of A\ = 2 for a magic (16,6,2)-Oval), and A\; = 1 (instead of A\; = 2). Al-
ternatively, S = G([1 12 15 6]) = {0,1,2,4,5,10} is the ‘closest’ that a
6-subset S” of Z1 with the frequency in A(S’) of 8 equal to 2 can be to a
(16, 6,2)-CDS. In A(S) the frequencies of 1 and 15 are 3 (instead of 2), and
the frequencies of 7 and 9 are 1 (instead of 2).
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(n, k,\) | D TAIS
(7,3, 1) {0,1,3} [124]
(11, 5, 2) {0,1,2,6,9} 11432
(13,4, 1) {0,1, 3,9} (126 4]
[1327]
(15,7, 3) {0,1,2,4,5,8,10} 1121325
(19, 9, 4) {0,1,2,3,5,7,12,13,16} 111225133
(21, 5, 1) {0,1,6,8,18} [15210 3]
(23, 11, 5) {0,1,2,3,5,7,8,11,12,15,17} 11122131326]
(31, 6, 1) {0,1,3,8,12,18} 12546 13]
13625 14]
151247 2]
17324 14]
(110872 3]
(31,15, 7)-A | {0,1,2,3,5,7,11, 14,15, 16, 22, 23, 26, 28, 29} 111224311613212]
111312164112232]
111413621121223]
(31,15, 7)-B | {0,1,2,3,7,9,11,12,13, 18,21, 25, 26, 28, 29} 111422115341212
(35, 17, 8) {0,1,2,3,5,6,10,16,17,18,22,24,25,27,28,31,33} [ [11121461142121322]
(37,9, 2) {0,1,3,7,17,24, 25,29, 35} 124107146 2]
1324521712
(40, 13, 4) {0,1,2,4,5,8,13,14,17,19,24, 26, 34} [1121351325286]
117132122467 3]

Table 4: All non-trivial (n, k, \)-CDS’s (up to (u, z)-equivalence) and the cor-
responding TAIS’s of all non-trivial magic (n, k, A)-Ovals (up to congruency)
forn <40 and 2 <k < [%].

6 Oval-partitions of {2n}?, cyclic difference
families, triangle-partitions of (Z)

See Section 3.9 of Schoen [8] for a preliminary version of some of the research

in this Section; see also Schoen and McK Shorb [9].

Let OP denote p copies of Oval O, in particular {2n}? denotes p copies of
the regular 2n-gon {2n}.

Definition 6.1  An Owal-partition of {2n}? is a partition of the rhombs
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from {2n}? into q (n, k;)-Ovals, O;, for various ¢ > 1 and various k; > 2:
{Qn}p—>01UOQU---UOq. (4)

Clearly (4) is equivalent to
q
p x RIV({2n}) = ) "RIV(0). (5)
i=1

We focus on p = 1 and sometimes shorten O1 U0, U--- U, to O10;--- O,.

Remark 6.2  Because the regular 2n-gon {2n} is a magic (n,n,n)-Oval
then, along the lines of Theorem 5.11, we can prove that in Oval-partition
(4) with p = 1 the total number of 1’s in the TAIS’s of the Ovals in
O1UO02U---UQO, equals n.

Definitions 6.3  distinct Oval-partition, OP(n), DOP(n)

(1) An Oval-partition is distinct if it contains distinct Ovals.

(2) OP(n) is the total number of Oval-partitions of {2n}, for n > 2; we
define OP(1) = 1.

(3) DOP(n) is the total number of distinct Oval-partitions of {2n}, for
n > 2; we define DOP(1) = 1.

See Table 5 for all Oval-partitions of {2n} and the corresponding triangle-
partition of (}) (see Section 6.3), for n = 2,3,4, and 5.
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in] (5) | ¢ | O-pof {2n} [ Apof (3) | OP(n) | Distinct? | DOP(n) |
211 1|0 1 1 Yes 1
31 3 110, 3 2 Yes 1
313 (3|02 13 No
41 6 1|0, 6 4 Yes 1
416 | 2|02 32 No
4 6 4 0%0203 133 No
41 6 | 6| 0l02 16 No
5110 | 1| Og [10] 12 Yes 3
5 10 3 010405 136 Yes
5 10 3 020305 136 Yes
5| 10 4 010303 133 No
5|10 | 4 | 0,020, 133 No
5110 | 5 | 02020, 146 No
5010 | 6 | 030,02 1432 No
) 10 6 0%050304 1432 No
5110 | 6 | 0,0302 1432 No
5010 | 8 | 0030, 173 No
5110 | 8 | 03010, 173 No
5|10 |10 | 0203 110 No

Table 5: All Oval-partitions (O-p) of {2n} and the corresponding triangle-
partition (A-p) of (3) (see Section 6.3); the values of OP(n) and DOP(n),
for 2 < n < 5. The Oval numbering O; refers to Table 2.

Example 6.4 n = 5. See Fig. 7. As an example with n = 5, we check
Equation (5) for the Oval-partition O;O030% of {10} from Table 5:

(5,5) = (1,0) + (2,1) +2(1,2).
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D~ 0B

(10} — O(L4)uo(i13)uo(22)uo(l22)
Figure 7: The Oval-partition O;030% of {10}.

Observe that the total number of 1’s in the TAIS’s of the Ovals in the above
Oval-partition equals n = 5, in agreement with Remark 6.2.

See Table 2, n = 5. In total there are 6 (5, k)-Ovals: {O1, Oz, O3, O4, Os, O }.
Let RZV(5) = {RIV(01),RIV(O2),RIV(Os), RIV(O,), RIV(O5), RIV(Os) } =
{(1,0),(0,1),(2,1),(1,2),(3,3),(5,5)}. Then to find all Oval-partitions of
{10} is equivalent to finding all sums of elements of RZV(5) which are equal
to RIV({10}) = (5,5), where elements can be used more than once.

Remark 6.5  Similarly, to find all Oval-partitions of {2n} is equivalent to
finding all sums of elements of the multiset of RIV’s of all (n, k)-Ovals which
are equal to RIV({2n}), where elements can be used more than once.

The values of OP(n) and DOP(n) for 2 < n < 5 are given in Table 5,
we have also computed OP(6) = 58, DOP(6) = 7, DOP(7) = 42, and
DOP(8) = 334. The sequences {OP(n)|n > 1} = {1,1,2,4,12,58,...}
and {DOP(n)|n > 1} = {1,1,1,1,3,7,42,334,...} now appear in [7] as
sequences A177921 and A181148 respectively.

We may also think about the Oval-partition {2n} — O;UO;U---UQ, in
terms of subsets S C Z,. From Example 5.12(a) the regular 2n-gon {2n} is a
magic (n,n,n)-Oval with corresponding (n,n,n)-CDS D ={0,1,...,n—1}.
We modify the proof of Theorem 5.11 to give the following.

Theorem 6.6  The Oval-partition {2n} — O U Oy U --- U O, exists if
and only if there exists q subsets Dy, Dy, ..., Dy C Z,, with the property that
A({0,1,...,n—1}) = A(D1) UA(D) U---UA(D,).
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Example 6.7 n = 5. See Example 6.4. We have D =
A(D) = {15,2°,3%,4°}, and subsets of Zs: D; = {0,1}, D,
D; =D, ={0,1,3}.

{0,1,2,3,4} and
= {0,1,2}, and

6.1 Homologous Oval-partitions, isopart triples, cyclic
difference families
Here we consider Oval-partitions of {2n}? in which the Ovals O; are (n, k)-

Ovals, where k is fixed.

Definition 6.8 A homologous Oval-partition of {2n}? is a partition of the
rhombs from {2n}? into ¢ (n, k)-Ovals, O;, for a fized k > 2:

{Qn}p—>01UOQU---UOq.
Note that the (n, k)-Ovals O; need not be congruent.

When p = 1 for a homologous Oval-partition of {2n} to exist we require
(g) |(5). There is a homologous Oval-partition of {2n} into ¢ =1 (n, n)-Oval,
namely into {2n} itself, and another into ¢ = (}) (n,2)-Ovals, namely into
the (%) rhombs of {2n}. We consider these two partitions as trivial, and so
in the following restrict ourselves to 2 < ¢ < (g) — 1.

Definitions 6.9  [(n, k), ] isopart triple, realizable

(1) The ordered triple [(n, k), q] is an isopart triple if
n k n
= <g< —1
(2) q (2) for some 2 <¢g < (2) ,

(2) The isopart triple [(n, k), q| is realizable if there exists a homologous
Oval-partition of {2n} into ¢ (not necessarily congruent) (n, k)-Ovals.

so k> 3.

Example 6.10
(a) [(n,k),q] = [(4,3),2]. See Table 2. The smallest isopart triple which

is realizable is [(4,3),2]. The relevant homologous Oval-partition is {8} —
02 =0([112)%
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(b) [(n,k),q] = [(6,3),5]. See Table 2. The smallest isopart triple which is
not realizable is [(6, 3), 5].
Suppose there is a homologous Oval-partition

{12} - O UOF U OF

where each ¢; > 0. Then the system of equations containing the equation
¢1 + g2 + g3 = 5 together with the RIV Equations (5):

(6,6,3) = q1(2,1,0) + ¢2(1,1,1) 4+ ¢3(0, 3,0)
must have a solution in the non-negative integers. That is, the system
Nt+a@ta=>520+qp=0 qg+q¢p+3i=06 ¢=3

must have a solution in the non-negative integers, a contradiction. Hence
the isopart triple [(6,3), 5] is not realizable.

See Table 6 for all isopart triples [(n,k),q] for 2 < n < 16. All are
realizable except [(6, 3), 5] and [(10, 3), 15].
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‘ Example of a homologous Oval-partition realizing [(n, k), q]

O([11 2])? (magic)

Not realizable

O([1 2 4])" (magic, see Table 4 row (7,3, 1), and Example 6.19(b))

7]
12] [O(L117)PO(1 447022570033 3)?
6] O(112 5])3 O([132 3])3

0,3),15] | Not realizable

O(111133

JO([112114)0(] 222] (see §3.9 p.22 of [§] and Fig. 8)
13

1 )
12 9])* 8)* o([1 4ﬂ)0( 46])* O([2 5 5])* O([3 3 6])*

1137)O([1218])O([124

O(
) O(] ([1254)O(1227)0([1317)
1416DO[142Q)(@2 ]
30[

|
E
( (2235)0(3333)
(

139025 6))"

1113)°O([177)°O(22 11])°O([3 3 9])> O([3 6 6])°>O([4 4 7]))° O([5 5 5])°
112164)0(112326))0(112362)0([122712)
124125)0(124143)0([13241 4))

O([
O([
O([
O([
O([1 2 6 4])'* (magic, see Table 4 row (13,4, 1))
O([ °O
O([
O([
O([1121 3 25])° (magic, see Table 4 row (15,7,3), and Example 6.19(c))

5]

40] [O([1213))*O([1 7 8])2O([2 4 10])®*O([3 4 9])* O([5 5 6])®
20] | See §3.9 p.23 of [§]

12] | See Example 6.11

8 |O([112156)*O([152233])* (see Example 6.20)

Table 6: All isopart triples [(n,k),q] for 2 < n < 16, and an example
of a homologous Oval-partition realizing the triple. Triples [(6,3),5] and
[(10, 3),15] are not realizable.
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O(111133) O(112114) 0O(121222)])

Figure 8: The homologous Oval-partition of {20} for isopart triple [(10,6), 3]
from Table 6.

Example 6.11  (n,k) = (16,5). Isopart triple [(16,5),12]. See §3.9 p.24
of [8]. Here each of the 12 (16,5)-Ovals are distinct, i.e., incongruent. The
Table below gives the TAIS’s and RIV’s of these 12 Ovals.
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Homologous Oval-partitions are closely related to another class of com-
binatorial objects, (cf., Theorem 6.6):

Definition 6.12 A (n, k, \)-cyclic difference family — (n, k, \)-CDF —is a
collection of ¢ k-subsets Dy, Ds, ..., D, C Z, with the property that
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A(D1) UA(Dg) U---UA(D,) contains every non-zero element of Z,, exactly
A times.

Remark 6.13  See Equation (3). In a (n, k, \)-CDF we have
ANn—1)=qk(k—-1),

A(n—1)
k(k—1)

hence ¢ = is an integer.

From Definition 6.8 of a homologous Oval-partition of {2n} and Defini-
tion 6.12 of a (n, k, A\)-CDF and Theorem 6.6 we have the following result.

Corollary 6.14  There exists a homologous Oual-partition of {2n} into q
(n, k)-Owvals if and only if there exists a (n,k,n)-CDF.

Clearly, by taking unions of CDF’s, there exists a (n, k,n)-CDF if and
only if there exists a collection of (n, k, \;)-CDF’s with >, \; = n. Hence,
another main result follows.

Theorem 6.15  There exists a homologous Oval-partition of {2n} into q
(n, k)-Ovals (i.e., isopart triple [(n,k),q] is realizable) if and only if there
exists a collection of (n,k, \;)-CDF’s with ). \; = n.

Example 6.16

(a) (n,k) = (9,4). See Example 1.6(a) p.470 of [3] for the (9,4,3)-CDF
with Dy = {0,1,2,4} and Dy = {0,3,4,7}. Using 3 copies of this CDF we
produce the following homologous Oval-partition of {18} into 6 (9, 4)-Ovals:
O(a(D1))? O(a(Dy))? = O([1 1 2 5])>O([1 3 2 3])3. This realizes isopart
triple [(9,4), 6] with the same partition as given in Table 6.

(b) (n,k) = (16,3). Conversely, we may take a partition which realizes an
isopart triple from Table 6 and produce a CDF. For example, the 5 (16, 3)-
Ovals from row [(16, 3),40]: O([12 13]) O([1 78]) O([24 10]) O([349]) O([55 6])
produce a (16, 3,2)-CDF with D; = {0,1,3}, Do = {0,1,8}, D3 = {0, 2,6},

Dy = {0,3,7}, and D5 = {0,5,10} which is not (u,z)-equivalent to the
(16, 3,2)-CDF in Examples 16.13, p.394 of Colbourn and Dinitz [4].

(c) (n,k) = (6,3). From Table 6 we see that isopart triple [(6,3), 5] is not
realizable, so, from Theorem 6.15, there does not exist a (6, 3,6)-CDF nor a
(6, 3,2)-CDF; see Table 11.2.29, p.61 of [4].

(d) (n,k) = (10,3). Similarly, isopart triple [(10, 3), 15] is not realizable, so
there does not exist a (10, 3, 10)-CDF nor a (10, 3, 2)-CDF; see Table 11.2.29,
p.61 of [4] again.
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6.2 Magic Oval-partitions

Recall that in a (n, k, \)-CDS we have \(n — 1) = k(k — 1).

As mentioned in Section 1 this research was partially motivated by Ques-
tion (iii) on p. 10 of Schoen [§].

Fiz n > 2, for which integers p and q can the rhombs contained in p
copies of {2n} be partitioned to tile ¢ congruent Ovals?

Definition 6.17 A magic Oval-partition of {2n}? is a partition of the
rhombs contained in {2n}? into g congruent (n, k)-Ovals, O:

{2n}F — O1. (6)

We now show that if such a magic Oval-partition of {2n}? exists, then O
is magic.

Theorem 6.18 The partition {2n}’ — O exists if and only if there exists
a (n,k, B2)-CDS, (O will then be a magic (n, k, £*)-Oval).

Proof. For odd n. Necessity: suppose that such a partition (6) exists.
Consider py, the rhomb of SRI,, with principle index h, for any fixed h =
1,2,..., %% It appears pn times on the left in partition (6) and g\, times
on the right, i.e., it appears \;, = % times in O. Thus ), is independent
of h, and so O is a magic (n,k, %)—Oval, (for some suitable k satisfying
k(k—1) = %(n —1)).
Sufficiency: conversely given a magic (n, k, %)-Oval O it contains % copies
of each rhomb p,. So O7 contains pn copies of each p,, but this is exactly
the number of copies of py, in {2n}”.

For even n. The proof is similar to the above, but we consider the non-
square rhombs py for h =1,2,..., 3 —1, and the square rhomb pz as separate
cases. 0]

We can find a partition where p and ¢ are the smallest by considering;:

p_A_XN

q n Con
where ged(A*, n*) = 1. This gives the partition:
{2n}V — O™,
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Any other partition with the same O is a ‘multiple’ of this one.
Note that if \* =1 and 2 < n* < (g) — 1 then [(n, k),n*| is a realizable
isopart triple.

Example 6.19
(a) See Examples 5.12(a) and (b). Oval {2n}’ is a magic (n,n — 1,n — 2)-
Oval obtained from the regular 2n-gon {2n} by removing its right-hand strip
of rhombs. For odd n we have % = "7_2 = 2—:, so the smallest magic Oval-
partition is

{2n}"2 — {2n} ™.

For even n = 2m the smallest magic Oval-partition is
{on}™t — {2n} ™.

(b) See Example 5.12(c). Oval O([1 2 4]) is a magic (7,3, 1)-Oval with RIV

(1,1,1). Now % = % = 2—*, so we have the following magic Oval-partition

{14} — O([1 2 4])".

The decomposition of 1 x RIV({14}) is 1 x (7,7,7) — 7 x (1,1,1), and the
relevant realizable isopart triple is [(7,3), 7]; see Table 6.

(c) (n,k) = (15,7). See Example 5.12(d). Oval O([1 12 1 3 2 5]) is a magic
(15,7,3)-Oval. Here 2 = & =1 50 A* =1 and n* = 5, this gives

{30}' - O([1 12132 5])°.

The RIV decomposition is 1x (15,15, 15, 15, 15, 15, 15) — 5% (3,3,3,3,3,3, 3)
and [(15,7),5] is the corresponding realizable isopart triple.
(d) (n, k) = (11,5). The (11,5)-Oval O([1 1 4 3 2]) is a magic (11,5, 2)-Oval.

Here % = 12—1 so A* = 2 and n* = 11. This gives us the following magic

Oval-partition where p # 1:
{22} - O([1 14 32"
The RIV decomposition is 2 x (11,11,11,11,11) — 11 x (2,2,2,2,2).

Example 6.20 (n,k) = (16,6). From Example 5.21 there does not exist
a magic (16,6,2)-Oval, i.e., there does not exist a (16,6)-Oval with RIV
(2,2,2,2,2,2,2,1). Now RIV({16}) = (16, 16, 16, 16, 16, 16, 16,8), 50 {16} 4
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O? where O is a fixed (16, 6)-Oval. In row [(16,6), 8] of Table 6 we gave the
homologous Oval-partition

{16} - O([112156)*O([1522 3 3])*,
with RIV decomposition
(16, 16, 16, 16, 16,16, 16,8) = 4(3,2,2,2,2,2,1,1) +4(1,2,2,2,2,2,3,1).

We now show that for every homologous Oval-partition {16} — O O
into exactly 2 incongruent (16, 6)-Ovals O; and O, we have ¢, = ¢ = 4.

Suppose ¢; = 1 and g2 = 7. Let RIV(O;) = (A1, A2, A3, Mg, As, As, A7, As)
and RIV(O2) = (pu, p2, 13, pia, P55 f pir, ps). Then
(16, 16, 16, 16, 16, 16, 16, 8)

= (A1, A2, A3, Mgy Asy Mgy Az, As) + 7 (s a2, (3, Has s, e, 175 Hs),
and A\, + Tup = 16 for h = 1,2,...,7. Hence for a fixed h = 1,2,...,7 we
have either A\, = pup = 2, or A, = 9 and p, = 1, or A\, = 16 and pup = 0.
In particular A\, > 2 for every h = 1,2,...,7. Now O, is a (16,6)-Oval so
S A = (g) = 15. Thus if \, = 2 for every h = 1,2,...,7 then \g = 1
and O; is a magic (16,6,2)-Oval, a contradiction. Hence for some h with
h=1,2,...,7 wemust have \, = 9 or \;, = 16, so 2221)% >6x2+9 =21.
But 2221 An < 15, a contradiction. Hence there is no homologous Oval-
partition {16} — O} OF. Similarly, the other possible homologous Oval-
partitions {16} — O?0S or {16} — O? O35 do not exist. Hence the only
homologous Oval-partition {16} — O O% has ¢ = ¢ = 4; an explicit
example is given above.

. °q n
6.3 Triangular-partitions of (2)
Recall the triangular numbers: {(3),n > 2} = {1,3,6,10,15,21,28,...}.

Definitions 6.21  Triangular-partition (A-partition) of (Z), realizable

(1) A triangular-partition (A-partition) of (3) is an integer partition of (3)
with each part a triangular number.

(2) A A-partition of (g) with ¢ parts in which the i-th part is (';) is realizable
if there exists an Oval-partition of {2n} into ¢ Ovals O; in which O; is
a (n, k;)-Oval, for each i =1,2,... q.
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Remark 6.22 The A-partition of (}) corresponding to isopart triple [(n, k), ¢] is (

Table 7 lists all A-partitions of (g) for n =2,3,...,8. For a fixed n the
A-partitions are given with increasing ¢, and then in lexicographic order for
constant ¢. The A-partition 3% of (g) = 15 is the only A-partition in Table 7
which is not realizable; see Example 6.10(b), and row [(6, 3), 5] of Table 6.

n ‘ (n) ‘ A-partitions of (g) ‘
2 1 |1

303 (3 1°

41 6 |6, 3% 133, 1°
5

6

10 | [10], 136, 13%, 196, 1132, 173, 110

15 | [15], 362, 123[10], 3%6, 1362, 3%, 1°[10], 133%6, 133", 1536,
1633’ 196, 1932’ 1123’ 115

71 21 | [21], 6[15], 1[10]2, 32[15], 36%, 1°3[15], 1236[10], 3367, 1367,
1233[10], 3%6, 15[15], 1°6[10], 133262, 37, 1°32[10], 13346,
16362, 1336, 183[10], 16336, 1962, 163°, 111[10], 19326, 1934,
11236, 11233’ 1156, 11532’ 1183’ 121

8 | 28 | [28],16[21], 3[10][15], 132[21], 162[15], 63[10], 13[10][15],
126[10]2, 1326[15], 3262[10], 143[21], 1232[10]2, 134[15],
1364, 3*6[10], 1436[15], 13362[10], 13363, 3°[10], 17[21],
153[10]2, 1133[15), 1464, 133%6[10], 13762, 176[15], 1°62[10],
113263, 133°[10], 1376, 18[10]?, 173%[15], 153%6[10], 13162,
139, 1736, 1631[10], 1366, 1103[15], 1936[10], 173362, 138,
11063, 193%[10], 173%6, 113[15], 1126[10], 1193262, 1737,
11232[10]’ 110346, 113362, 11036’ 1153[10]’ 113336, 11662, 11335’
118[10]’ 116326, 11634’ 11936, 11933’ 1226, 12232’ 1253’ 128

Table 7: All A-partitions of (g) for 2 < mn < 8. All are realizable except 3%,
for n = 6.

44

k
2

)"



Example 6.23 2 < n < 6. See Table 5 for realizations of all A-partitions
of (g) for 2 < n < 5. See Table 8 for all A-partitions of (g) = 15 and, except
for 3%, an Oval-partition of {12} which realizes it. The A-partition 3® is not
realizable. The Oval numbering O; refers to Table 2.

[A-pof (5) O-pof {12} [A-pof () O-pof {12} |Apof (5) O-pof {12}

[15] On 3° Not realizable | 1933 030303
362 0,050,  |1°]10] 02030505, |19 001020,
123[10] 00,0501 19326 0,02020, | 193 02010302
336 0,020, 1331 0050, |13 010030,
1362 020,02 |1°36 0,03020,0, |115 O8O0}

Table 8: All A-partitions (A-p) of (g) = 15 and, except for 3%, an Oval-
partition (O-p) of {12} which realizes it.

We have extended our results on A-partitions of (Z) up to n = 10.

Example 6.24 For n = 2,3,...,10 all A-partitions of (Z) are realizable

except 35 for n = 6 (see Examples 6.10(b) and 6.16(c)), and 315, 3%[21], 3°[10]3, 33(36],
and 3[21]? for n = 10. The unrealizable A-partitions for n = 10 were shown

to be unrealizable along the lines of Example 6.10(b) using MAPLE; see also
Example 6.16(d).

7 wu-equivalent Ovals

In this Section we explain why 2 incongruent (n, k)-Ovals can have RIV’s
that are permutations of each other. For example, see Table 2 n = 7, there
are 4 incongruent (7, 3)-Ovals: {O4, Os, Og, O7}, but 3 of them: {O4, O, O7}
have RIV’s that are permutations of (2, 1,0).

Recall the operations « and [ from Definitions 2.8, and the function r
from Equation (2). Recall also that S = {si,$2,...,5:} where 0 < s; <
Sg < --- < 8 is a k-subset of Z, with elements in increasing order. For
u € U(n), when we form uS = {usy, uss,...,us;} we will always rearrange
the elements of S in increasing order also, so that we may apply a to uS.

Further, we let [| 5] = {1,2,...,[5]}.
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Lemma 7.1  Let principal index h occur A, times in OIT(a(S)) = r(5(.9)).
Then for any u € U(n) principal index uh occurs Ay, times in OIT(a(uS)) =
r(d(us)).

Proof. Let principal index uh occur Ay, times in OIT(a(uwS)) = r(6(uS)).
We must show that A\, = Ay.

First we show A, < Ay: principal index h occurs Ay, times in OIT(a(S)) =
r(6(5)), so there are A, pairs {s;,s;} where 1 < i < j < k for which s; —
s;i € {h,—h}. Consider uS = {usy,uss,...,usp} = {vi,v9,...,vx} where
0 <wv; <wvg <--- <. Suppose pair {s;,s;} satisfies s; —s; € {h,—h}
with s; —s; = h. Then us; — us; = uh, i.e., vp — vg = uh where v, = us;
and vy = us;. If £ > ' then pair {v,, vy} satisfies vy — vy = uh and so
vy — vy € {uh,—uh} and 1 < ¢ < ¢ < k, and if £ < ¢ then pair {vy,vs}
satisfies vy — vy = —uh and so again vy — vy € {uh, —uh}and 1 < < ' < k.
Thus, in either case, a pair {s;, s;} for which s; —s; = h where 1 <i < j <k
gives rise to a pair {v,, vy} for which v, — v, € {uh, —uh} and 1 < a < b < k.
Similarly if s; — s; = —h. Thus A\, < Ays.

To show that A\, > Aun, e, A < A, we start with V = uS =

{usy,usg, ..., usp} = {v1,v2,...,v:} and argue as above with u replaced
by u=t.
The above two paragraphs give A\, = A\, as required. O

Definitions 7.2 1O, permutation P,
Let O be an (n, k)-Oval with TAIS T', and let v € U(n).

(1) wO is the (n, k)-Oval with TAIS a(uB(T)).

(2) Permutation P, is the permutation of [| % |] given by P,(h) = r(uh), for
every h € [[5]] and u € U(n).

Theorem 7.3  Let O be an (n, k)-Oval and let w € U(n). Then RIV(uQ) =
P,(RIV(0)).

Proof. For each h € [|§]] let the h-th entry of RIV(O) be Aj, then, from
Lemma 7.1, the uh-th entry of RIV(uQ) is also A\;. Hence RIV(uQ) is a per-
mutation of RIV(O) where, for each h € [[5]], the h-th entry (of RIV(O))
is moved to the uh-th entry (of RIV(uQ)), i.e., is moved by the application
of permutation P,. Thus the result. OJ
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Example 7.4
(a) For every n > 2 we have —1 € U(n) and P_; is the identity permutation
of [|5]]. Hence RIV(—0) = RIV(0O). Confirming this, see Lemma 3.2(i), we

have TAIS(—0) =, TAIS(O) and hence RIV(—0) = RIV(0O).

(b) (n,k) = (15,6). See Example 2.5. For the (15,6)-Oval X with TAIS
T =1[432141] we have X = (T) = {0,4,7,9,10,14}. Unit 2 € U(15)
gives permutation P, = (124 7)(3 6)(5) of [7]. Now 2X = {0, 3,5,8,13, 14},
and so 2 = O([3 23 5 1 1]). We check: RIV(2X) = Py(RIV(X)) =
Py(2,1,2,2,4,2,2) = (2,2,2,1,4,2,2), as required by Theorem 7.3.

(¢) (n,k) = (16,6). We show how we used Theorem 7.3 in Example 6.20.
In Example 6.20 it was required to find 2 (16, 6)-Ovals O; and O, for which
RIV(Oy) + RIV(O2) = (4,4,4,4,4,4,4,2). From Example 5.21 we had a
(16,6)-Oval © = O([1 1 21 5 6]) with RIV(Q) = (3,2,2,2,2,2,1,1). We
observed that (4,4,4,4,4,4,4,2) — RIV(O) = (1,2,2,2,2,2,3,1) is a per-
mutation of RIV(Q). Further, unit 7 € U(16) gives permutation P; =
(1 7)(3 5)(2)(4)(6)(8) of [8], and P(RIV(O)) = (1,2,2,2,2,2,3,1). Then
letting O; = O and Oy =70 = O([1 5 2 2 3 3]) gave the required Ovals.

Definition 7.5 Two (n, k)-Ovals Oy and O, are u-equivalent, Oy =, Os,
if there is a u € U(n) such that O; = uOs.

It is clear that u-equivalence is an equivalence relation on O%(n, k), the
set of (n, k)-Ovals up to congruency.

Definitions 7.6 O;_ (n,k), Oc=,(n, k)
(1) O;_, (n,k) is the set of equivalence classes of =, in OF(n, k).

(2) Oc=,(n, k) = 0% _ (n, k)| is the number of equivalence classes of =, in
O (n, k).

Example 7.7 (n,k) = (7,3). See Table 2, n = 7. Here Oy = 204 = 407,
and Os = uO; for every u € U(7). Hence there are O.=,(7,3) = 2 =,-
equivalence classes in O}(7, 3), namely [O4] = {O4, O, O} and [O5] = {O5}.
We have O} _ (7,3) = {[O4], [Os]}. We say that there are 2 (7,3)-Ovals up
to u-equivalence, namely Ovals O4 and Os; see Table 9.
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‘ n ‘ k ‘ O, =u (n’ k) ‘ O:,Eu (n> k)
812 3 01, 0,,0,
* 8 3 4 057 OG) 077 08

2 ‘ ; ‘ OC — (n’ k) ‘ © = (n’ k) ‘ 814 6 0107 Oll) 0127 0137 0167 017
2|2 1 O 815 4 O18, O19, O29, O
312 1 Oy 816 3 Oa3, 024, O3
33 1 O, 8|7 1 Oyy
412 2 01702 8|8 1 028
413 1 O3 912 2 01,04
414 1 Oy 913 3 Os, Og, O11
512 1 0, 914 4 O12, 013, O15, 017
513 1 O3 915 4 Oa2, Oa3, O24, Oa9
54 1 Os 916 3 O3z, O33, O3
5(5 1 O 9|7 2 O39, On
6|2 3 Ol, Og, Og 9|8 1 043
6|3 3 047 057 6 9 9 1 044
6|4 3 Oz, Og, Oq 10} 2 3 01,04, O
65 1 10 10} 3 4 Os, O7, Oy, Oq
6|6 1 O 10} 4 9 O14, O15, O16, O17, O13, O19, O22, Oz, Oa7
712 1 O 1015 9 O30, O31, O3z, O33, O34, O34, O37, O3s, Oy5
713 2 Oy, 05 10| 6 9 Ou6, Ouz, Oss, Oug, Os0, Os1, Os3, Os7, Oss
714 2 Os, Oq 101 7 4 Os2, O3, Os5, O
715 1 Oys 10| 8 3 Or0, O71, O74
716 1 015 1019 1 075
717 1 O16 1010 1 o

Table 9: All (n, k)-Ovals up to u-equivalence for 2 < n < 10. The equivalence

class [O;] is denoted by O;; see Example 7.7.
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