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Abstract. Let χ∗(G) denote the minimum number of colors required in a coloring c of the

vertices of G where for adjacent vertices u,v we have c(NG[u]) 6=c(NG[v]) when NG[u] 6=NG[v] and

c(u)6=c(v) when NG[u]=NG[v]. We show that the problem of deciding whether χ∗(G)≤n, where

n≥3, is NP-complete for arbitrary graphs. We find χ∗(G) for several classes of graphs including

bipartite graphs, complete multipartite graphs, as well as, cycles and their complements. A

sharp lower bound is given for χ∗(G) in terms of χ(G) and an upper bound is given for χ∗(G)

in terms of ∆(G). For regular graphs with girth at least four we give substantially better upper

bounds for χ∗(G) using random colorings of the vertices.
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1. Introduction.
Addressing scheme used for electronic mail is hierarchical, and is represented by a tree.

An individual, who belongs to more than one organization or group, may have more than
one address called aliases. This can be modeled by an acyclic directed graph. On the
other hand, two different individuals belonging to the same organization and with the
same initial and last name may have the same address. In such a case, address resolution
may be based on the set of aliases associated with each individual provided that these sets
are distinct. In the context of generalized graph coloring, each vertex is to be distinguished
from its neighbors based on the name or color assigned to it. Therefore, we require that
if two adjacent vertices have the same closed neighborhood, then their colors be distinct;
otherwise, it is enough to require that the set of colors assigned to the closed neighborhood
of each vertex be distinct. Our discussion motivates the following definition.

For a graph G, a (not necessarily proper) coloring c of the vertices of G is a good
coloring of G if and only if for all edges uv of G, c(u) 6= c(v) when NG[u] = NG[v] and
c(NG[u]) 6= c(NG[v]) when NG[u] 6= NG[v]. A good coloring of G using k colors will be
referred to as a good k-coloring of G. If we assign each vertex of G a different color
we have a good coloring of G. Let χ∗(G) denote the minimum number of colors required
in a good coloring of G. Hence, χ∗(G) ≤ n when G has order n. It is readily seen that
χ∗(G) ≥ 3 for any connected graph G with order at least 3.

A simple graph G has vertex set V (G) and edge set E(G). The order of G is |V (G)| and
the size of G is |E(G)|. For a vertex v in G, the open neighborhood NG(v) of v in G is the
set of all vertices in G adjacent to v and the closed neighborhood NG[v] = NG(v) ∪ {v}.
The degree dG(v) of a vertex v in G is |NG(v)| and ∆(G) is the maximum degree of a
vertex in G. For vertices u, v in G, the distance dG(u, v) between u, v in G is the length
of a shortest (u, v)-path in G. We denote a cycle (path) of order n by Cn (Pn) and the
complement of a graph G by G. The girth of G is the length of a shortest cycle in G. All
other notation and terminology generally follows Bondy and Murty [1]. Unless otherwise
noted, all logarithms are natural.

2. Complexity.
We show that the problem of deciding whether χ∗(G) ≤ n, where n ≥ 3, is NP-complete

for arbitrary graphs.

Graph n-Colorability
INSTANCE: Graph G = (V,E).
QUESTION: Is G n-colorable, i.e., does there exist a function c : V → {1, . . . , n} such that
c(u) 6= c(v) whenever {u, v} ∈ E?

It is known that graph n-colorability, for n ≥ 3, is NP-Complete. (see [4].)

Graph Generalized n-Colorability
INSTANCE: Graph G = (V,E).
QUESTION: Does G have a good n-coloring?
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Theorem 1. Graph generalized n-colorability for any n ≥ 3 is NP-Complete.

Proof. Clearly, graph generalized n-colorability is in NP. Consider the reduction from
the graph n-colorability problem. Let G = (V,E) be a given graph. Construct graph
G′ = (V ′, E′) as follows. Replace each edge uv ∈ E by P4 = u, u′, v′, v where u′, v′ are
new vertices, and replace each vertex u ∈ V by C4 = u, u1, u2, u3, u, where u1, u2, u3 are
new vertices.

Let c1 be a proper n-coloring of G. We show that c1 induces a good n-coloring c2 of
G′. For each {u, v} ∈ E, if c1(u) = i and c1(v) = j then c2(u) = i, c2(v) = j, and
c2(u′) = c2(v′) = k where k is any color other than i, j. For each u ∈ V if c1(u) = i then
c2(u) = i, c2(u1) = j, c2(u2) = i, and c2(u3) = k where j, k are distinct colors different
than i. It is easily verfied that c2 is a good n-coloring of G′.

Conversely, let c2 be a good n-coloring of G′. Consider edge uv ∈ E and let P4 =
u, u′, v′, v be the corresponding path in G′. If c2(u) = c2(v) then c2(NG′ [u′]) = c2(NG′ [v′]),
hence, c2(u) 6= c2(v). Therefore, by setting c1(u) = c2(u) for each u ∈ V , we obtain a
proper n-coloring of G. �
As our construction preserves planarity, graph generalized n-colorability, for any n ≥ 3, is
NP-complete for planar graphs.

3. Exact Values.
In this section we find χ∗(G) for several classes of graphs.

Theorem 2. For a connected bipartite graph G with order at least 3,

χ∗(G) = 3.

Proof. Let v be a vertex of G whose eccentricity is r = radius(G) ≥ 2 (r = 1
being trivial). Let Nk = Nk(v) = {w ∈ V (G) : dG(v,w) = k}, Ok = Ok(v) ={
w ∈ Nk(v) : NG(w) ⊆ Nk−1

}
and P k = P k(v) = Nk(v) − Ok(v) for 0 ≤ k ≤ r. Each

set Nk is independent since G is bipartite. Now color N4k color 1; N4k+2 color 3; O4k+1

color 1; P 4k+1 color 2; O4k+3 color 3, and P 4k+3 color 2. It is easily seen that this is a
good 3-coloring of G so that χ∗(G) = 3. �

Theorem 3. We have

χ∗(Cn) =
{

4 , n = 5 or 7
3 , n is odd and n ≥ 9.
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Proof. It is easy to verify the result for n = 5 or 7. So we assume n ≥ 9. It is sufficient
to construct a good coloring c of Cn using three colors. Let Cn = v0, v1, . . . , vn−1, v0. We
define the good 3-coloring c of Cn as follows.

c(vi) =





1 , i is even
2 , i ≡ 1 (mod 4)
3 , i ≡ 3 (mod 4)

with the exceptions that c(v2) = 3, and c(vn−3) = 2 when n ≡ 1 (mod 4); c(v0) = 2, and
c(v1) = c(v2) = c(vn−3) = 3 when n ≡ 3 (mod 4). �

Theorem 4. If G is a complete t-partite graph with exactly m vertices of degree |V (G)|−1,
then

χ∗(G) =
{

2t − 1 , m = 0
2t −m , m > 0.

Proof. Let P1, P2, . . . , Pt be the t-partitions of V (G) such that |Pi| = 1 if and only if
1 ≤ i ≤ m. Let c be a good coloring of G using χ∗(G) colors. Define Ci = c(Pi) for
1 ≤ i ≤ m, and Ci = c(Pi) − c(V (G) − Pi) for m < i ≤ t. Then we can easily check the
following three observations.

(i) Ci ∩ Cj = ∅ whenever i 6= j.
(ii) If m < i 6= j ≤ t, then either |Ci| > 1 or |Cj | > 1.
(iii) If |Ci| ≤ 1 for some i > m, then m = 0.
We now consider two cases.

Case 1. m = 0.
In this case we may assume |Ci| > 1 for all i > 1 by (ii) and (iii). Note that C1∩Cj = ∅

for all j > 1. Then we have χ∗(G) ≥ |C1|+
∑t

i=2 |Ci| ≥ 1 + 2(t − 1) = 2t − 1.

Case 2. m > 0.
In this case we have |Ci| > 1 for all i > m. Then χ∗(G) ≥

∑t
i=1 |Ci| ≥ m + 2(t −m) =

2t − m.
This proves the lower bound.
Now let c be a good coloring of G such that (i) Ci ∩ Cj = ∅ whenever 1 ≤ i 6= j ≤ t;

and (ii) |Ci| = 2 whenever i > m with the exception that |C1| = 1 if m = 0. Then clearly
c is a good coloring of G. �

Lemma 5. Let V be a finite set, and S = {B1, B2, . . . , Bb} be a collection of distinct
subsets of V such that

(i) 1 ≤ |Bi| ≤ 2 for each i;

(ii) 1 ≤ rv ≤ 2 for each v ∈ V , where rv denotes the number of subsets in S containing v.

Then |V | ≥ (2b + a1)/3, where a1 denotes the number of v’s so that rv = 1.
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Proof. For i = 1, 2, let ai denote the number of v’s in V so that rv = i and bi denote the
number of subsets of size i in S. By counting the number of ordered pairs (v,Bi), where
v ∈ Bi ⊆ V , in two ways we have

2a2 + a1 = 2b2 + b1. (1)

Now let τ be the number of ordered pairs (v,Bi) such that v ∈ Bi, |Bi| = 2, and
rv = 2. Then we have a2 ≤ τ ≤ 2b2 or b2 ≥ 1

2a2. This, together with (1), implies that
2a2 + a1 ≥ b + a2/2, or

3|V | = 3(a1 + a2) ≥ 2b + a1.

Then |V | ≥ (2b + a1)/3. �

Theorem 6. We have

χ∗(Cn) =





d(2n + 2)/3e , n ≡ 0, 5 (mod 6), n 6= 12
d(2n − 1)/3e , n 6≡ 0, 5 (mod 6)
8 , n = 12.

Proof. We first prove the lower bound. Assume V (Cn) = {v1, v2, . . . , vn} such that
vivj ∈ E(Cn) if and only if i and j are not consecutive, i.e., j 6≡ i + 1 (mod n). Let c be
a good coloring of Cn with the color set X = {x1, x2, . . . , xt}, where t = χ∗(Cn). Define
Bi = X − c(NCn

(vi)) for 1 ≤ i ≤ n. Clearly Bi = ∅ for at most two i’s, in which case they
are consecutive. Hence, we assume Bi 6= ∅ if and only if 1 ≤ i ≤ b, where n − 2 ≤ b ≤ n,
and let S = {B1, B2, . . . , Bb}. It can be seen that all the sets in S are distinct. Now
let rx denote the number of Bi in S containing x for every x ∈ X. Thus rx ≤ 2 for all
x ∈ X. We then define Ai = {xj : rxj = i} and ai = |Ai| for 0 ≤ i ≤ 2. Therefore,
χ∗(Cn) = t = a0 + a1 + a2.

Case 1. a0 > 0.
Define S1 = {B1, B3, . . . , Bα}, S2 = {B2, B4, . . . , Bβ}, X1 = B1 ∪ B3 ∪ · · · ∪ Bα, X2 =

B2 ∪B4∪ · · · ∪Bβ, where α = 2dn/2e− 3 and β = 2bn/2c− 2. Then we have X1 ∩X2 = ∅,
and we can apply Lemma 5 to both (X1, S1) and (X2, S2), so that

|X1| ≥
2
3

(
α + 1

2

)
and |X2| ≥

2
3

(
β

2

)
.

Thus

χ∗(Cn) = t = |X1| + |X2| + a0 ≥
⌈

α + 1
3

⌉
+

⌈
β

3

⌉
+ 1

=
⌈

2
3
(dn/2e − 1)

⌉
+

⌈
2
3
(bn/2c − 1)

⌉
+ 1,

which is at least as large as the lower bound.
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Case 2. a0 = 0.
In this case we can apply Lemma 5 to (X,S) so that

χ∗(Cn) = t ≥ 2b + a1

3
=

2n + a1 − 2(n − b)
3

(2)

If Bn = ∅, then we have c(vn−1) 6= c(v1), for otherwise c(v1) would be a color in
A0. Furthermore, we have c(vn−1) and c(v1) are both contained in A1. Similarly, if
Bn = Bn−1 = ∅, we can check that c(vn−2), c(vn−1), c(vn), and c(v1) are distinct and
contained in A1. Thus we have shown that a1 ≥ 2(n − b). Therefore, by (2), we may
assume

a1 = 2(n − b) ≤ 4 (3)

Hence, χ∗(Cn) ≥ 2n
3 and we may asssume n ≡ 0 (mod 6) with n 6= 6.

Notice that each color in A2 (A1) is used exactly once (twice) in V (Cn). Then we have
2a1 + an = n, and (3) implies that

χ∗(Cn) = a1 + a2 = n − a1 ≥ n − 4,

which is at least as large as the lower bound unless n ≤ 11.
This completes the proof of the lower bound.
We now prove the upper bound. The graph in Figure 1 covers the case n = 12, where

the number next to each vertex represents the color of that vertex.
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Write n = 6m + r, where 1 ≤ r ≤ 6. Define R = ∅ if r ≤ 2; R = {xi : 1 ≤ i ≤ r − 2} if
r ≥ 3; and S = {0} ∪ {ai, bi, ci, di : 0 ≤ i ≤ m − 1}. We now define a good coloring c of
G using colors in S ∪ R as follows.

(i) For k = 6j + i, where 0 ≤ j ≤ m − 1, and 1 ≤ i ≤ 6,

c(vk) =





0 , 1 ≤ i ≤ 2
aj , i = 3
bj , i = 4
cj , i = 5
dj , i = 6.
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(ii) c(vn) = 0 if r = 1
(iii) For r ≥ 2, k = 6m + i, where 1 ≤ i ≤ r,

c(vk) =
{

xi , 1 ≤ i ≤ r − 2
0 , i = r − 1 or r.

It is easily seen that c is a good coloring of Cn. �

Definition. We say a vertex v distinguishes an edge e = xy in G if and only if (NG[x]−
NG[y]) ∪ (NG[y] − NG[x]) = {v}.

Lemma 7. For any graph G, there exists a vertex v in G that does not distinguish any
edge of G.

Proof. Suppose not. Let V (G) = {v1, . . . , vn} where vi distinguishes the edge ei for
1 ≤ i ≤ n. Let H denote the subgraph of G induced by the n edges {ei : 1 ≤ i ≤ n}.
Then H contains exactly n edges and at most n vertices. Then H contains a cycle C =
w0, w1, . . . , wr−1, w0. Without loss of generality, we may assume ei = wi−1wi for 1 ≤ i ≤ r.
Now for any 1 ≤ i 6= j ≤ r, vi is adjacent to exactly one of wi−1 and wi, and vi is adjacent
to neither or both of wj−1 and wj . Hence, if viwi ∈ E(G), then vi would be adjacent to
all the other vertices in C, which is impossible. �

Given any graph G, we use s(G) to denote the maximum number of vertices in G all
having the same closed neighborhood. Then we have s(G) ≤ |V (G)|, with equality if and
only if G is a complete graph.

Theorem 8. Let H be a graph of order n and Kn be vertex-disjoint from H, where n ≥ 2.
Define G to be the graph obtained from H and Kn by adjoining a 1-factor between H and
Kn. Then we have χ∗(G) = n − 1 + s(H), unless each component of H is a P3 or H
contains an isolated vertex and s(H) = 1, in which case χ∗(G) = n + 1.

Proof. We first partition V (H) into m subsets V1, . . . , Vm so that two vertices in H have
the same closed neighborhood in H if and only if they are in the same subset. For any
vertex x in H, we use f(x) to denote the vertex in Kn adjacent to x. For 1 ≤ i ≤ m, let
Ui = f(Vi) denote the set of vertices in Kn adjacent to vertices in Vi.

We first prove the lower bound. Let c denote a good coloring of G using χ∗(G) colors.
Then we have the following observations.

(i) No two vertices in H can receive the same color.
(ii) No two vertices in Ui can receive the same color for any fixed i, 1 ≤ i ≤ m.
(iii) |c(V (Kn)) ∩ c(V (H))| ≤ 1.
Therefore we have χ∗(G) ≥ |c(V (H))|+ |c(V1)|−1 = n+s(H)−1, where |V1| = max{|Vi| :
1 ≤ i ≤ m} = s(H).
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If each component of H is a P3, then we can easily check that χ∗(G) ≥ n + 1. If
s(H) = 1 and H contains an isolated vertex u, then clearly |c(V (Kn))| ≥ 2. Hence,
χ∗(G) ≥ n + 2 − 1 = n + 1.

We now prove the upper bound. Let v be a vertex in H that does not distinguish any
edge of H. Without loss of generality, we may assume u1 is the vertex in U1 = f(V1)
adjacent to v. We also choose an arbitrary vertex ui ∈ Ui for 2 ≤ i ≤ m. Let S1 =
{1, 2, . . . , n} and S2 be a set of s(H) − 1 colors other than those in S1. We now define a
good coloring of G as follows.

(i) Color vertices in H with those colors in S1, so that c(v) = 1 and no two vertices in
H receive the same color;

(ii) c(ui) = 1 for 1 ≤ i ≤ m;
(iii) c(Ui−{ui}) ⊆ S2 and no two vertices in Ui−{ui} receive the same color for 1 ≤ i ≤ m;
with the exception that c(u) = n + 1 for all u ∈ V (Kn) − {v1} if each component of H is
a P3 or H contains an isolated vertex and s(H) = 1. Then we can easily verify that c is a
good coloring of G. �

4. Bounds.
We first give a sharp lower bound for χ∗(G) in terms of χ(G). This is a special case of

a more general result whose proof can be found in Zhang [5].

Theorem 9. 1 + dlog2 χ(G)e ≤ χ∗(G). Furthermore, for all n ≥ 1 there exists a graph G
such that χ(G) = n and χ∗(G) = 1 + dlog2 ne.

For a positive integer k and a graph G, a coloring c of the vertices of G is a good
distance-k-coloring of G if and only if c(u) 6= c(v) for distinct vertices u, v with
dG(u, v) ≤ k. If we assign each vertex G a different color we have a good distance-k-
coloring of G for all positive integers k. Let χk(G) denote the mininum number of colors
required in a good distance-k-coloring of G. Hence, χk(G) ≤ n when G has order n. We
require the following result.

Lemma 10. For a graph G with ∆ = ∆(G) ≥ 3,

χk(G) ≤ ∆(∆ − 1)k − 2
∆ − 2

.

Proof. Let ` denote the integer ∆(∆−1)k−2
∆−2 . We apply the Greedy Algorithm to any

ordering v1, . . . , vn of the vertices of G. First color v1 with color 1. Assume we have a
good distance-k-coloring of v1, . . . , vj using the colors 1, . . . , `. Now

#{vi : dG(vi, vj+1) ≤ k, 1 ≤ i ≤ j} ≤ ∆ + ∆(∆ − 1) + · · · + ∆(∆− 1)k−1

=
∆(∆− 1)k − ∆

∆ − 2
= `− 1.
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Hence, at most ` − 1 colors are present among these vertices and we color vj+1 with the
smallest color which has not been used. �

Remark. Our proof also shows that χk(G) ≤ 2k + 1 when ∆(G) = 2.

Theorem 11. For a graph G,
χ∗(G) ≤ χ3(G)

hence, for ∆ = ∆(G) ≥ 3,

χ∗(G) ≤ ∆(∆ − 1)3 − 2
∆− 2

.

Proof. Let c be a good distance-3-coloring of G using χ3(G) colors. Hence, c is a proper
coloring of G. For edge uv of G with w ∈ NG[u]−NG[v], c(w) 6∈ c(NG[v]) since dG(w, x) ≤ 3
for all x ∈ NG[u] and, hence, c(NG[u]) 6= c(NG[v]) (w ∈ NG[v] − NG[u] is similar).
Consequently, c is a good coloring of G. �

Remark. The bound given in Theorem 11 may be quite weak; we know of no graphs
where equality is attained.

5. Bounds for Regular Graphs with Girth at Least Four.
We use the following inequality,

1 − x ≤ e−x for x ∈ R. (4)

For integers k, n with 1 ≤ k ≤ n, let (n)k = n(n − 1) · · · (n − k + 1). Then (4) implies

(n)k ≤ nke−(k
2)/n ≤ e1/2nke−k2/2n, nk. (5)

For nonnegative integers k, `, n with k ≤ k + ` ≤ n − 1, we use

(
n − `

k

)(
n

k

)−1

≤ e−k`/n (6)

We also use the following results for the Stirling number S(n, k) of the second kind
(see [2; p. 204–208]),

S(n, 2) = 2n−1 − 1 for n ≥ 1. (7)

and

S(n, k) ≤
(

n − 1
k − 1

)
kn−k for 1 ≤ k ≤ n. (8)

We make use of the Lovász Local Lemma (see [3]).
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Lemma. (Erdös and Lovász) Let A1, A2, . . . , An be events in an arbitary probability
space. Suppose that each event Ai is mutually independent of all, but at most d, of the
other events Aj and that P (Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(d + 1) ≤ 1

then

P (
n∧

i=1

Ai) > 0.

(As usual A denotes the complement of the event A.)

We are able to substantially improve the bound in Theorem 11 for regular graphs with
girth at least four using random colorings of the vertices. Observe that if a graph G has
girth(G) ≥ 4 and uv ∈ E(G), then NG[u] 6= NG[v] when dG(u) + dG(v) ≥ 3.

Theorem 12. For an r-regular graph G of order n with r ≥ 61 and girth(G) ≥ 4,

χ∗(G) ≤ dere.

Proof. We initially assume only that r ≥ 3. Independently, color the vertices of G
randomly from [k] = {1, . . . , k} according to a uniform distribution. Hence, each coloring
of G has probability k−n. For uv ∈ E(G), let Auv denote the event “c(NG[u]) = c(NG[v])”.
Hence,

P (Auv) = k−2r+1 +
(

k

2

)
S(r + 1, 2)2!

[
2S(r − 1, 2), 2!

+ 3S(r − 1, 1)1!
]
k−2r +

r+1∑

j=3

(
k

j

)
S(r + 1, j)j!

[
2S(r − 1, j)j!

+ 3S(r − 1, j − 1)(j − 1)! + S(r − 1, j − 2)(j − 2)!
]
k−2r.

Here
(
k
j

)
is the number of ways to select j colors; S(r + 1, j) is the number of ways to

partition NG[u] into j nonempty sets; j! is the number of ways to assign the j colors to
these sets; 2S(r − 1, j)j! arises when the color(s) at u, v appear again in NG(v) − {u};
3S(r − 1, j − 1)(j − 1)! arises when u, v have the same color which does not appear again
in NG(v) − {u} or when u, v have different colors exactly one of which appears again in
NG(v) − {u}; and S(r − 1, j − 2)(j − 2)! arises when u, v have different colors neither of
which appears in NG(v) − {u}. (The cases j = 1, 2 are indicated separately.)

For 3 ≤ j ≤ r − 1, 0 ≤ i ≤ 2, (8), as well as, analysis of the cases i = 0, j = r, r + 1;
i = 1, j = r + 1 implies

S(r − 1, j − i)(j − i)! ≤
(

r − 2
j − i − 1

)
(j − i)!jr+1−j

11



while (5), as well as, analysis of the above cases implies

(
r − 2

j − i − 1

)
(j − i)! ≤ jrj−1

so that
S(r − 1, j − i)(j − i)! ≤ rj−1jr+2−j .

Similarly, for k ≥ 1, (5) and (8) imply

(
k

j

)
S(r + 1, j)j! ≤ e2(ek)jrj−1jr+2−2je−j2/2r.

Hence,

P1 :=
r+1∑

j=3

(
k

j

)
S(r + 1, j)j!

[
2S(r − 1, j)j!

+ 3S(r − 1, j − 1)(j − 1)! + S(r − 1, j − 2)(j − 2)!
]
k−2r

≤6e2

r2

r∑

j=3

(
ekr2

j3

)j

j2r+4e−j2/2rk−2r + 8kr
( r

k

)r

.

For f(j) =
(

ekr2

j3

)j

j2r+4e−j2/2r we have f ′(j) = f(j)
[
log

(
kr2

e2j3

)
+ 2r+4

j − j
r

]
>

f(j) log
(

kr2

ej3

)
> 0 on [3, r] provided k ≥ er. Then

P1 ≤ 6e2r3

(
e1/2r

k

)r

+ 8kr
( r

k

)r

≤ 7e2r3

(
e1/2r

k

)r

(9)

provided er ≤ k ≤ e7/2r2/8. Also (7) and (8) imply,

(
k

2

)
S(r + 1, 2)2!

[
2S(r − 1, 2)2! + 3S(r − 1, 1)1!

]
k−2r ≤ k2

(
4
k2

)r

.

Hence,

P (Auv) ≤ k−2r+1 + k2

(
4
k2

)r

+ 7e2r3

(
e1/2r

k

)r

≤ 8e2r3

(
e1/2r

k

)r

when er ≤ k ≤ e7/2r2/8. The event Auv depends only on the events Awx with
dG(uv,wx) ≤ 2; hence, at most 2r3 − 1 such events Awx. For k = dere with r ≥ 61

16e3r6

(
e1/2r

k

)r

≤ 16r6e−(r−6)/2 < 1

12



and the Lovász Local Lemma implies

P (
∧

uv∈E

Auv) > 0.

Consequently, there exists a good k-coloring of G and χ∗(G) ≤ dere. �

The proof of Theorem 12, using (9) with er ≤ k ≤ e7/2r2/8, immediately gives the
following result.

Corollary 13. For an r-regular graph G with 7 ≤ r ≤ 60 and girth(G) ≥ 4,

χ∗(G) ≤ dcrre

where
cr = e1/2(16e3r6)1/r.

Remark. Observe that cr is a decreasing function of r on [2,∞) with c7
.= 19.937,

c60
.= 2.7337 > e > 2.6496 .= c61.

We can extend Corollary 13 to 3 ≤ r ≤ 60 by analyzing the proof of Theorem 12.
However, for small values of r, the required probabilities can be found exactly rather than
estimated. We give only the result for cubic graphs.

Theorem 14. For a cubic graph G with girth(G) ≥ 4,

χ∗(G) ≤ 15.

Proof. We use the probability space and notation of Theorem 12 and give only a brief
outline of the proof. For uv ∈ E(G), let the neighbors of u be u1, u2, v and the neighbors of
v be u, v1, v2. Necessarily, u, v, u1, u2, v1, v2 are distinct. Let p denote the number of colors
present among u, v, u1, u2, v1, v2 and (c1, . . . , cp) denote the event “among the colors of
u, v, u1, u2, v1, v2, some color occurs c1 times, another color occurs c2 times, etc”. Finally,
observe that the event “the colors of u1, u2, v1, v2 occur exactly once among the colors of
u, v, u1, u2, v1, v2” is a subevent of Auv so that p ≥ 5 is a subevent of Auv. By direct
enumeration and independence,

P (Auv and (6)) =
k

k6
, P (Auv and (1, 5)) =

2k(k − 1)
k6

, P (Auv and (2, 4)) =
13k(k − 1)

k6
,

P (Auv and (3, 3)) =
10k(k − 1)

k6
, P (Auv and (1, 1, 4)) =

k(k − 1)(k − 2)
k6

,

P (Auv and (1, 2, 3)) =
16k(k − 1)(k − 2)

k6
, P (Auv and (2, 2, 2)) =

10k(k − 1)(k − 2)
k6

,

P (Auv and (1, 1, 1, 3)) = 0, and P (Auv and (1, 1, 2, 2)) =
2k(k − 1)(k − 2)(k − 3)

k6
.

13



Hence,

P (Auv) =
2k3 + 15k2 − 34k + 18

k5
.

Now Auv depends on at most 28 other events and for k ≥ 15,

29e
2k3 + 15k2 − 34k + 18

k5
< 1

so that the Lovász Local Lemma implies

P (
∧

uv∈E

Auv) > 0.

Consequently, there exists a good 15-coloring of G and χ∗(G) ≤ 15. �

Suppose G has no isolated edges and girth(G) ≥ 4. We say uv ∈ E(G) is attached to
w ∈ V (G) −{u, v} provided uw or vw ∈ E(G). Since girth(G) ≥ 4, precisely one of uw or
vw is in E(G). A set W ⊆ V (G) is an attachment set of G provided each edge in G is
attached to some vertex in W . Clearly, V (G) is an attachment set of G. Let τ (G) denote
the smallest cardinality of an attachment set of G. Hence, τ (G) ≤ n when G has order n.
In fact, τ (G) ≤ n − 1 according to Lemma 7. We require the following result.

Lemma 15. If G has no isolated edges and girth(G) ≥ 4, then

χ∗(G) ≤ 1 + τ (G).

Proof. Let W be an attachment set of G with |W | = τ (G) = τ . Color each vertex of W
with a distinct color from {1, . . . , τ} and color each vertex of W with color τ + 1. Clearly,
this coloring is a good coloring of G. �

Our final result improves the bound in Theorem 12 for dense regular graphs with girth
at least 4.

Theorem 16. For an r-regular graph G of order n ≥ 48 with r ≥ 3 and girth(G) ≥ 4,

χ∗(G) ≤ 1 +
⌈ n

2r
log 2er3

⌉
.

Proof. Randomly choose W ⊆ V (G) with |W | = k according to a uniform distribution.
Hence, P (W ) =

(
n
k

)−1. For uv ∈ E(G), let Auv denote the event “uv is not attached to
any vertex in W”. Hence,

P (Auv) = P
(
W ∩ (NG(u) ∪ NG(v)) = ∅

)
=

(
n − 2r

k

)(
n

k

)−1

.
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For n ≥ 48, r ≥ 3 and k =
⌈

n
2r log 2er3

⌉
, (6) implies

P (Auv) ≤ e−2rk/n ≤ (2er3)−1.

As in Theorem 12, Auv depends on at most 2r3 − 1 other events Awx, and the Lovász
Local Lemma implies

P (
∧

uv∈E(G)

Auv) > 0.

Consequently, there exists an attachment set of G having cardinality k and our result now
follows from Lemma 15. �

6. Open Problems.
In this section we give three open problems.

(1) Find a good upper bound for χ∗(G) in terms of χ(G). As a consequence of Theorem
8, χ∗(2Kn +1− factor) = 2χ(G)− 1, which is the largest such value we have been able
to find.

(2) Find a good upper bound for χ∗(G) in terms of ∆(G). In Theorem 11, a cubic upper
bound was given for χ∗(G) in terms of ∆(G). Perhaps, there is a linear upper bound
for χ∗(G) in terms of ∆(G).

(3) Determine the quality of the upper bound for χ∗(G) given in Theorems 12 and 16.
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