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Abstract

For a simple graph G consider an injection µ : V ∪ E → N. If for
every vertex x ∈ V we have µ(x) +

∑
y∼x µ(xy) = h, and for every

edge xy ∈ E we have µ(x) + µ(xy) + µ(y) = k, for some constants h
and k, then µ is a totally magic injection (TMI) of G. Also, mt(G)
is the smallest number in N such that there is a TMI µ : V ∪ E →
{1, 2, . . . , mt(G)}. Here we study TMIs and the number mt(G) for
certain G. One theorem, the Star Theorem, is useful for eliminating
many classes of well-known graphs that could have a TMI. For most
n and nj the following graphs do not have a TMI: every non-star tree,
Pn, Cn, Wn, Kn, and Kn1,n2 ,...,np . We determine mt(F ) for every forest
F that has a TMI, and mt(G) for every graph G with ≤ 6 vertices
that has a TMI.
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1 Totally Magic Injections

Let G be a simple graph with set of vertices V (G) or V of size v, and set
of edges E(G) or E of size e. We use single letters for vertices, eg. x, and
pairs of letters for edges, eg. xy. The notation x ∼ y indicates that x is
adjacent to y. The degree of a vertex x is deg(x). Let N = {1, 2, . . .} denote
the natural numbers and let [m] = {1, 2, . . . ,m}.

Consider an injection
µ : V ∪ E → N,

i.e., each vertex and edge of G is labeled with a distinct natural number. For
a vertex x ∈ V let its weight under µ be wt(x):

wt(x) = µ(x) +
∑

y∼x

µ(xy),

and for an edge xy ∈ E let its weight under µ be wt(xy):

wt(xy) = µ(x) + µ(xy) + µ(y).

Then µ is a totally magic injection (TMI) of G if for every vertex x ∈ V and
for every edge xy ∈ E we have

wt(x) = h and wt(xy) = k,

for some constants h and k.
Comparing with the definition of a totally magic labeling (TML) from

[2] in which the labeling is λ : V ∪ E → {1, 2, . . . , v + e}, we see that our
definition of a totally magic injection is a generalization of this. We use the
symbol µ for a TMI to distinguish it from the usual symbol λ for a TML.

The study of graphs with a TMI is an interesting question in its own
right. Also, by weakening the definition of a TML to a TMI, we hope to shed
further light on the features of a graph with a TML, since every component
of a graph with a TML must have a TMI, see §2.

We call h the vertex constant of µ, and k the edge constant . When
necessary we use wtµ, hµ,... for wt, h,... to signify µ.

Suppose that in a TMI µ of G the largest label is m, then we call µ a
[m]-totally magic injection, a [m]-TMI. We call m the size of the injection.
A [m]-TMI of G is minimal if G does not have a [m′]-TMI for every m′ < m.
Such a TMI is a minimal TMI or a minimal [m]-TMI.
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We define mt(G) to be the smallest m such that G has a [m]-TMI. Clearly
mt(G) ≥ v + e and a TML from [2] is a minimal TMI or a minimal [v + e]-
TMI. We also define the total deficiency of G, deft(G), to be mt(G)− v− e.
If G has a TML then mt(G) = v + e and deft(G) = 0.

This concludes §1. In §2 we give examples of graphs with and without
a TMI. We also prove the first useful Theorems. In §3 we prove the Star
Theorem which gives many ‘forbidden configurations’ that prevent a graph
from having a TMI. Using these forbidden configurations we eliminate many
classes of well-known graphs that could have a TMI. In §4 we determine
mt(F ) for every forest F that has a TMI. Finally, in §5, we define a TMI-
survivor, and determine mt(G) for every graph G with ≤ 6 vertices that has
a TMI.

2 Examples, First Theorems

If, for a graph G, an injection µ : V ∪E → N satisfies wt(x) = h for a fixed h
for all vertices x ∈ V then µ is a vertex-magic injection of G. See §3.9 of [5],
where it is shown that all graphs except those with K1∪K1 as components or
a K2 component have a vertex-magic injection. Similarly, if wt(xy) = k for a
fixed k for all edges xy ∈ E then µ is an edge-magic injection of G. See §2.10
of [5], where it is shown that all graphs have an edge-magic injection. Thus
a TMI of G is both a vertex-magic injection and an edge-magic injection.
So, perhaps not surprisingly, graphs that have a TMI appear to be rare. In
fact, (see §5), amongst the 208 graphs with ≤ 6 vertices, exactly 174 have
a vertex-magic injection, all 208 have an edge-magic injection, but only 12
have a TMI.

Example 1 Four graphs. The first three have a TMI, the fourth does not.
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(i) The isolated vertex K1. Here v = h = m = mt(K1) = 1, and e =
deft(K1) = 0. If we let K1 = {x} then we see that, for any fixed h ∈ N,
the injection given by: µ(x) = h is a TMI of K1. Hence a given graph
can have different TMIs.

(ii) The star K1,3. Here v = 4, e = 3, h = 10, k = 11, and m = 8. This is
the smallest m possible for a TMI of K1,3 because mt(K1,3) ≥ v+e = 7,
but a [7]-TMI of K1,3 would be a TML and K1,3 does not have a TML,
see Corollary 3.2 of [2]. So this [8]-TMI of K1,3 is a minimal TMI, thus
mt(K1,3) = 8 and deft(K1,3) = 1.

(iii) The triangle K3. Here v = e = 3, h = 9, k = 12, and m = v + e = 6.
So this [6]-TMI of K3 is a TML, a minimal TMI, thus mt(K3) = 6 and
deft(K3) = 0.

(iv) The isolated edge K2. Call this edge xy. If it has a TMI µ then we must
have wt(x) = µ(x) + µ(xy) = wt(y) = µ(y) + µ(xy), i.e., µ(x) = µ(y).
This is a contradiction because µ is an injection. So K2 doesn’t have a
TMI.

The following Lemma will be useful in this paper.

Lemma 2.1 Let G have a [m]-TMI with vertex constant h. Then

(i) h ≥ m,

(ii) h = m if and only if G has an isolate.

Proof. (i) Let µ denote the [m]-TMI of G, so m has been used either
as a vertex label or as an edge label in G. Suppose that m has been used
as a vertex label on vertex x, so µ(x) = m. Then h = wt(x) = µ(x) +∑

y∼x µ(xy) = m +
∑

y∼x µ(xy) ≥ m. Now suppose that m has been used
as an edge label on edge xz, so µ(xz) = m. Then h = wt(x) = µ(x) + m +∑

y∼x
y 6=z

µ(xy) > m since µ(x) > 0, so h ≥ m also.

(ii) From (i) if h = m then m must have been a vertex label, at vertex x say.
Then h = m if and only

∑
y∼x µ(xy) = 0, if and only if x is an isolate.

As usual, in the remainder of this section G is an arbitrary simple graph.
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Theorem 2.2 Let G have a TMI. Then every component of G has a TMI.

Proof. Let G have a TMI µ, and let C be any component of G. Then
clearly the ‘restriction’ of µ to C is a TMI of C.

The converse of this Theorem is not true. Consider the graph H =
K1 ∪ K1 = {x} ∪ {y}, the union of two isolates. From Lemma 2.1(ii) if H
has a [m]-TMI µ then both isolates in H must receive the label m. This is a
contradiction because µ is an injection, so H doesn’t have a TMI. Although
this is a simple example it shows that, in general, a TMI of H1 and a TMI
of H2 cannot necessarily be ‘pieced together’ to produce a TMI of H1 ∪ H2.
This example also shows that if G has K1∪K1 as components then it doesn’t
have a TMI. However K1 as a component is allowed, we have:

Theorem 2.3 Let G not have an isolate. Then K1 ∪G has a TMI if and
only if G has a TMI.

Proof. If K1 ∪ G has a TMI then, from Theorem 2.2, so does G.
For the backward implication: Let µ, with constants h and k, denote the

TMI of G, let us say that it is a [m]-TMI of G. Now G does not have an
isolate so, from Lemma 2.1, h > m. Hence h has not been used as a label in
G.

Let z be the isolate in K1 ∪ G. Now define an injection µext of K1 ∪ G
as follows: µext(z) = h, and µext(x) = µ(x) for every vertex x ∈ V (G) and
µext(xy) = µ(xy) for every edge xy ∈ E(G). It is straightforward to check
that µext is a TMI of K1 ∪ G.

Corollary 2.4 Let G have a TMI µ and not have an isolate. Then µ can
be extended to a TMI of K1 ∪ G, with the same vertex and edge constants.

Proof. The TMI of K1∪G µext defined above in the proof of Theorem 2.3
has the same constants as µ.

Remark We will always use the notation µext for the extension of µ from
G to K1 ∪ G as indicated in Corollary 2.4.
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Example 2 The extension of a [6]-TMI of K3 with h = 9 and k = 12 to a
[9]-TMI of K1 ∪ K3 with h = 9 and k = 12.
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Recalling that K2 doesn’t have a TMI, a necessary condition for G to
have a TMI is given below:

Theorem 2.5 Let G have a TMI. Then either

(i) G has exactly one isolate and all remaining components have ≥ 3 vertices
and have a TMI, or

(ii) all components of G have ≥ 3 vertices and have a TMI.

6



3 Star Theorem, Connected G without a TMI,

Forbidden Configurations

The following Theorem has proved useful in eliminating graphs that may have
a TMI. Many results produced from it appear in [2], namely Theorems 3.3,
3.5, 3.7, 3.9, and 3.11, and Corollaries 3.4, and 3.6. Thus many of the
Theorems in [2] which were used to exclude the possibility of TMLs actually
exclude the possibility of TMIs. We call this Theorem the ‘Star Theorem’.
We note that the Star Theorem could have been used to prove many of the
results in [2]. We only consider connected graphs in this section.

Let G have a TMI µ with vertex and edge constants h and k. Let a be
any vertex in G with neighbors {x1, x2, . . . , xd}. For every i = 1, 2, . . . , d let
Xi =

∑
y∼xi
y 6=a

µ(xiy), i.e., let Xi be the sum of the labels of all edges incident

to xi and ‘outside’ the star centered at a.
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Theorem 3.1 (Star Theorem) With the above G, µ, and a we have

X1 = X2 = · · · = Xd = h − k + µ(a),

which is constant for a fixed vertex a.

Proof. For every i = 1, 2, . . . , d we have

h = wt(xi) = µ(xi) + µ(xia) + Xi,

k = wt(xia) = µ(xi) + µ(xia) + µ(a),
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so Xi = h − k + µ(a), which is constant for a fixed vertex a.

The next result is due to Brown [1].

Corollary 3.2 Let G have a TMI µ. Let α be any edge in G then

µ(α) +
∑

β∼α

µ(β) = 2h − k,

a constant, where the sum is over all edges β adjacent to α.

Proof. Here α = ab.

t taHH
��A

b
��HH B

Let A be the sum of the labels of all edges incident to a and outside the
star centered at b, define B similarly. From above A = h − k + µ(b) and
B = h − k + µ(a). So µ(α) +

∑
β∼α µ(β) = µ(α) + A + B = 2h − k.

The next five Theorems are all proved using the Star Theorem, after each
Theorem we give a simple Corollary.

Theorem 3.3 Let G have a TMI. If G has a vertex of degree 1 then the
component of G containing it is a star.

Proof. Let x1 have degree 1 and let x1 be adjacent to a. Let a also
be adjacent to the vertices {x2, . . . , xd}. Applying the Star Theorem at a
yields X1 = X2 = · · · = Xd. But X1 = 0 because x1 has degree 1, so
X2 = · · · = Xd = 0 also, and a is the center of a star.
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Corollary 3.4

(i) Every connected graph with a vertex of degree 1 that is not a star does
not have a TMI.

(ii) Every tree that is not a star does not have a TMI.

In the next section we will see that for every n ≥ 2 the star K1,n does in
fact have a TMI.

Theorem 3.5 Let G have a TMI. If G has two adjacent vertices of degree
2 then the component of G containing them is a triangle.

Proof. Let the TMI of G be µ, and let the two adjacent vertices of degree
2 be a and b and let a ∼ x and b ∼ y, see (i) below:
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(ii)

Applying the Star Theorem at a gives X = µ(by) and at b gives Y = µ(ax).
Now wt(x) = wt(y) gives µ(x) + µ(ax) + X = µ(y) + µ(by) + Y , hence
µ(x) = µ(y), and, because µ is an injection, we have x = y. So we have (ii)
above, where we denote vertex x = y by c. Now applying the Star Theorem
at a again gives C = µ(bc), so C − µ(bc) = 0. But C − µ(bc) is the sum of
the edge labels of all edges incident to c and outside triangle abc, thus abc is
a triangle component.

For n ≥ 1 let Pn denote the path on n vertices, and for n ≥ 3 let Cn

denote the cycle on n vertices.

Corollary 3.6 For every n ≥ 4 the path Pn and the cycle Cn does not
have a TMI.
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Theorem 3.7 Suppose that G contains two vertices with a common neigh-
bor. If these two vertices each have degree 2, or are adjacent and each have
degree 3, then G does not have a TMI.

Proof. Let the two vertices be a and b with common neighbor x. For the
case in which deg(a) = deg(b) = 2 let a ∼ a1 and b ∼ b1.

s s
s sa b

a1AA�� b1AA��

T
T
TT�

�
��s

x

Suppose that G has a TMI µ. Applying the Star Theorem at x gives
µ(aa1) = µ(bb1), a contradiction. Similarly if deg(a) = deg(b) = 3 and
a ∼ b.

For n ≥ 3 let Wn denote the wheel with one vertex in the center and n
vertices on the rim, and let Fn denote the fan obtained from Wn by removing
one rim edge. By using Theorem 3.7 with a and b as rim vertices and x as
the center we have:

Corollary 3.8 For every n ≥ 3 the wheel Wn and the fan Fn does not
have a TMI.

Theorem 3.9 Let G have a TMI, and let G contain a triangle. Then the
sum of the labels of all edges outside the triangle and incident with any one
vertex of the triangle is the same, whichever vertex of the triangle is chosen.

Proof. Let the TMI of G be µ, and let the three vertices of a triangle be a,
b, and c. Let A be the sum of the labels of all edges incident to a and outside
the triangle, i.e., except for edges ab and ac; define B and C similarly.
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Applying the Star Theorem at a gives B + µ(bc) = C + µ(bc), so B = C;
similarly applying it at b gives A = C. Hence A = B = C.

Corollary 3.10 Any graph that contains a triangle with exactly one or
exactly two vertices of degree 2 does not have a TMI.

Theorem 3.11 Let G have two vertices that are each adjacent to exactly
the same set of other vertices of size ≥ 2. Then G does not have a TMI.
(The two vertices themselves may be adjacent or non-adjacent.)

Proof. Consider the case when the two vertices a and b are non-adjacent,
let them both be adjacent to {x1, x2, . . . , xd} where d ≥ 2, and to no other
vertices.
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For i = 1, 2, . . . , d let Xi be the sum of the labels of all edges incident to xi

and outside the neighborhood graph shown above, i.e., except edges xia and
xib. Applying the Star Theorem to a gives Xi +µ(xib) = h−k+µ(a), and to
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b gives Xi + µ(xia) = h− k + µ(b). So µ(xia)− µ(xib) = µ(b)− µ(a) 6= 0 for
every i. Now wt(a) = wt(b), i.e., µ(a) +

∑d
i=1 µ(xia) = µ(b) +

∑d
i=1 µ(xib).

So
∑d

i=1(µ(xia)− µ(xib)) = µ(b)− µ(a), i.e., d (µ(b) − µ(a)) = µ(b)− µ(a),
a contradiction because d ≥ 2. The proof is similar if a ∼ b.

For n ≥ 1 let Kn denote the complete graph with n vertices, and for p ≥ 2
let Kn1 ,n2,...,np denote the complete p-partite graph with nj ≥ 1 vertices in
part j for every j = 1, 2, . . . , p.

Corollary 3.12

(i) For every n ≥ 4 the complete graph Kn does not have a TMI.

(ii) p = 2. For every pair {n1, n2} with both n1 ≥ 2 and n2 ≥ 2 the complete
bipartite graph Kn1 ,n2 does not have a TMI.

(iii) p ≥ 3. For every p-set {n1, n2, . . . , np} with at least one nj ≥ 2 the
complete p-partite graph Kn1 ,n2 ,...,np does not have a TMI.

If a graph G has one of the configurations mentioned in Theorems 3.3,
3.5, 3.7, 3.9, or 3.11 then it does not have a TMI. Thus the configurations
given in these Theorems are ‘forbidden configurations’, they forbid G from
having a TMI. Below we have shown all forbidden configurations which come
from these Theorems. Here a number i next to a vertex indicates a vertex of
degree exactly i, and the two short lines attached to a vertex indicate that
there may or may not be further edges incident to it.
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Forbidden Configurations

If a graph contains any of these configurations then it does not have a TMI.
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4 Forests

Here we determine mt(F ) and deft(F ) for every forest F that has a TMI.

First consider the star F = K1,n for n ≥ 2. From Corollary 3.2 of [2] the
only star with a TML is K1,2, hence mt(K1,2) = 5.

Theorem 4.1 For n ≥ 3 we have mt(K1,n) =

(
n + 2

2

)
− 2.

Proof. Let the center of K1,n be c, let the outer vertices be {x1, x2, . . . , xn},
and let K1,n have TMI µ. Without loss of generality let the n edge labels
satisfy:

1 ≤ µ(cx1) < µ(cx2) < · · · < µ(cxn). (1)

For any fixed j = 1, 2, . . . , n we have wt(c) = wt(xj), so

µ(c) +

n∑

i=1

µ(cxi) = µ(xj) + µ(cxj),

and so

µ(xj) = µ(c) +
n∑

i=1
i 6=j

µ(cxi). (2)

Now, from (1) and (2), for j = 1, 2, . . . , n clearly µ(xj) is largest when j =
1. That is, µ(x1) > µ(xj) for every j = 2, . . . , n. Also from (2) we have
µ(x1) > µ(c), hence µ(x1) is the largest vertex label. But again from (2)
we have µ(x1) > µ(cxn), so, from (1) again, µ(x1) is larger than every edge
label. Thus µ(x1) = m is the largest label.

Now we minimize m = µ(x1) = µ(c) +
∑n

i=2 µ(cxi). We first determine
where to place the label 1.

From (1), for each i = 2, . . . , n, we have µ(cxi) ≥ 2 , i.e., 1 is not an
edge label for any edge cxi for i = 2, . . . , n. Hence, to minimize m, we first
let µ(c) = 1. Now if µ(cx2) = 2 then µ(cx1) = 1, a contradiction. So we
finish the minimization of m by letting µ(cx2) = 3, µ(cx3) = 4, . . ., i.e.,
by letting µ(cxi) = i + 1 for each i = 2, . . . , n. Hence the minimum m is
m = 1 + 3 + · · · + (n + 1) =

(
n+2

2

)
− 2.

We now let µ(cx1) = 2 and µ(xi) =
(
n+2

2

)
− (i + 1) for each i = 2, . . . , n,

so all vertices and edges have been labeled.
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The labels {1, 2, . . . , n+1,
(

n+2
2

)
−(n + 1),

(
n+2

2

)
−n, . . . ,

(
n+2

2

)
−2} are all

distinct provided that
(

n+2
2

)
− (n+1) > n+1, i.e., provided that n ≥ 3. It is

straightforward to check that this labeling is a TMI of K1,n, (with h =
(
n+2

2

)

and k =
(

n+2
2

)
+ 1), and is therefore a minimal TMI.

Corollary 4.2 For n ≥ 3 we have mt(K1 ∪ K1,n) =

(
n + 2

2

)
.

Proof. The above minimal TMI µ of K1,n has h =
(

n+2
2

)
. Now apply

Corollary 2.4 with G = K1,n to obtain the TMI µext of K1 ∪ K1,n with
mµext =

(
n+2

2

)
.

Now let µ1 be an arbitrary TMI of K1∪K1,n. Then, from Lemma 2.1(ii),
since K1 ∪ K1,n has an isolate, we have mµ1 = hµ1 . Let c denote the center
of K1,n then hµ1 = wtµ1(c) ≥

∑n+1
i=1 =

(
n+2

2

)
. So mµ1 ≥

(
n+2

2

)
, and hence µext

above is a minimal TMI of K1 ∪ K1,n.

Theorem 4.3 The only forests F that have a TMI are K1, or K1,n for
n ≥ 2, or K1 ∪ K1,n for n ≥ 2. Furthermore we have (n ≥ 3):

mt(F ) =





1, 5, 6 if F = K1, K1,2,K1 ∪ K1,2,(
n + 2

2

)
− 2 if F = K1,n,

(
n + 2

2

)
if F = K1 ∪ K1,n.

Proof. Let the forest F have a TMI. Every component of F has a vertex of
degree 1, and so, from Theorem 3.3, every component of F is a star, and F is a
union of stars. Hence, from Theorem 2.5, either (i) F = K1∪K1,n1∪K1,n2∪· · ·
where each ni ≥ 2, or (ii) F = K1,n1 ∪ K1,n2 ∪ · · · where each ni ≥ 2.

Now suppose that F contains at least two stars K1,ni , where each ni ≥ 2.
Then it is straightforward to show that the labels on the centers of each of
these stars is k−h, a contradiction. Hence F contains at most one star K1,n,
where n ≥ 2.

Hence either (i) F = K1 or F = K1 ∪ K1,n for n ≥ 2, or (ii) F = K1,n

for n ≥ 2. Now the three forests K1, K1,2, and K1 ∪ K1,2 each have a TML.
Hence mt(K1) = 1, mt(K1,2) = 5, and mt(K1 ∪ K1,2) = 6. This fact and the
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previous two results complete the proof.

Finally, using deft(F ) = mt(F ) − v − e, we have:

Theorem 4.4 Let F be a forest that has a TMI. Then the total deficiency
of F is given by (n ≥ 3):

deft(F ) =





0, 0, 0 if F = K1,K1,2,K1 ∪ K1,2,
n2 − n − 4

2
if F = K1,n,

n2 − n − 2

2
if F = K1 ∪ K1,n.

Example 3 The minimal
[(

n+2
2

)
−2

]
-TMI of K1,n together with the n =

3 case, giving a minimal [8]-TMI of K1,3, is shown first below. Then the
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5 TMI-Survivor, Graphs with ≤ 6 vertices

that have a TMI

In this section we define a TMI-survivor. Then we find all graphs G with
≤ 6 vertices that have a TMI, and, for each of them, the numbers mt(G) and
deft(G).

Because of Theorem 2.2 when searching for graphs with a TMI we start
searching amongst connected graphs.

Borrowing the idea of a survivor from §6 of [2] we define a TMI-survivor
to be a simple graph ( 6= K2) that is connected and that does not contain
any of the forbidden configurations given at the end of §3. (Note that a
TMI-survivor need not have a TMI, however the smallest that does not have
a TMI has 7 vertices.)

A list of the 143 connected graphs with ≤ 6 vertices is given on pp.7–9
of Steinbach [4]. Of these there are exactly six TMI-survivors: K1, K1,2, K3,
K1,3, K1,4, and K1,5, and all six have a TMI.

We then used these TMI-survivors as components to find a further six
disconnected graphs that have a TMI: K1∪K1,2, K1∪K3, K1∪K1,3, K1∪K1,4,
K1,2 ∪ K3, and K3 ∪ K3.

Thus, in total, there are exactly 12 graphs with ≤ 6 vertices that have
a TMI. Of these 12 graphs eight are forests and have been considered in
Theorems 4.3 and 4.4. The remaining four graphs G, and their numbers
mt(G) and deft(G), are given in the Table below.

G mt(G) deft(G) Comments

K3 6 0 Example 1(iii)
K1 ∪ K3 9 2 See Remark 1 below
K1,2 ∪ K3 13 2 See Remark 3 below
K3 ∪ K3 14 2 See Remark 2 below

Remarks
1. K1 ∪ K3.

Example 2 gives a [9]-TMI of K1 ∪ K3. From Theorem 4 of [2] we know
that K1 ∪K3 doesn’t have a TML, i.e., doesn’t have a [7]-TMI. Let z denote
the K1 component in K1∪K3. From Lemma 2.1(ii) if {z}∪K3 has a [8]-TMI
then h = m = µ(z) = 8. So the remaining six labels for the K3 component
must come from the set {1, 2, 3, 4, 5, 6, 7}. But clearly using 6 or 7 as a label
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on the K3 component with h = 8 gives a contradiction. Hence K1 ∪ K3

doesn’t have a [8]-TMI. So mt(K1 ∪ K3) = 9 and deft(K1 ∪ K3) = 2.

2. K3 ∪ K3.
We have proved the following Theorem in [3]:

Theorem 5.1 Let s ≥ 2 be even.

Then mt(sK3) = 6s + 2 and deft(sK3) = 2.

A minimal [14]-TMI of K3 ∪ K3 (with h = 19 and k = 26) is:

t
t t�
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AA

8 13

12

6 1

5

t
t t�
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��A

A
A
AA

9 14

10

7 2

3

3. K1,2 ∪ K3.
Consider the above [14]-TMI of K3∪K3. Subtract 1 from each label, and

remove the edge with label 0. This gives the [13]-TMI of K1,2 ∪ K3 (with
h = 16 and k = 23) below.

t t t
7 1211

45

t
t t�
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�
��A

A
A
AA

8 13

9

6 1

2

To show that this is a minimal TMI we must show that K1,2 ∪ K3 doesn’t
have an [11]- or [12]-TMI:

Consider the ‘generic’ labeling of K1,2 = {x, y, z} under TMI µ with
constants h and k below:
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t t t
k − h h − `2h − `1

`2`1x y z

That is: µ(x) = h− `1, µ(y) = k−h, µ(z) = h− `2, µ(xy) = `1, and µ(yz) =
`2. Now, from Corollary 3.2, we have `1 + `2 = 2h − k. So µ(x) + µ(z) = k.
Thus if we include edge xz with µ(xz) = 0, then wt(xz) = k. Then we
can add 1 to all labels to arrive at a TMI of K3. Clearly if there was an
[11]- or [12]-TMI of K1,2 ∪ K3 then applying the above process to the K1,2

component (and adding 1 to each label in the K3 component) would produce
a [12]- or [13]-TMI of K3 ∪ K3, a contradiction from Remark 2. Hence the
above [13]-TMI of K1,2 ∪K3 is a minimal TMI. We have mt(K1,2 ∪K3) = 13
and deft(K1,2 ∪ K3) = 2.

A summary of the situation for vertex-magic injections/edge-magic injec-
tions/TMIs for graphs with ≤ 6 vertices is given below:
(i) amongst the 143 connected graphs with ≤ 6 vertices exactly 142 (all ex-
cept K2) have a vertex-magic injection, all 143 have an edge-magic injection,
but only 6 have a TMI,
(ii) amongst the 208 graphs with ≤ 6 vertices exactly 174 have a vertex-
magic injection, all 208 have an edge-magic injection, but only 12 have a
TMI.
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