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Abstract

An m-path cover I' = {Py,, Py,,..., Py, } of a simple graph G is
a set of vertex disjoint paths of G, each with £, < m vertices, that
span G. With every P, we associate a weight, w(Fy), and define the
weight of I" to be w(T') = [[;_; w(P, ). The m-path cover polynomial
of G is then defined as P,,(G) = > pw(I'), where the sum is taken
over all m-path covers I' of G. This polynomial is a specialization of
the path-cover polynomial of Farrell. We consider the m-path cover
polynomial of a weighted path P(m — 1,n), and find the (m + 1)-term
recurrence that it satisfies. The matrix form of this recurrence yields
a formula equating the trace of the recurrence matrix with the m-
path cover polynomial of a suitably weighted cycle C(n). A directed
graph, T'(m), the edge-weighted m-trellis, is introduced and so a third
way to generate the solutions to the above (m + 1)-term recurrence is
presented. We also give a model for general term linear recurrences

and time dependent Markov chains.

* Corresponding author.



1 Introduction, m-path cover polynomial, No-

tation

Let G be a graph with no loops or multiple edges, with vertex set V(G).

First we review some basic concepts to establish notation.

A path P, in G is a sequence of distinct vertices Py = [v1,Va, ..., V¢ where
each pair (v;,vi41) for 1 <i < /¢ —11is an edge. The length of a path is the
number of vertices in it. Thus a path of length 1 is a vertex, and a path
of length 2 an edge, and P, has length ¢. Path P, begins at vertex vy, its
first vertex, and ends at vertex vy, its last vertex. The path [vi,va, ..., V(]
and its reverse [vy, Vo1, ..., V1] are considered to be the same path. The set
of vertices in Py is V(F;) = {v1,va,...,v¢}. Two paths P, and Py in G are
disjoint if V(P)) NV (Py) = (. The empty path has 0 vertices. Finally, recall
that a subgraph of G spans G if it has the same vertex set as G.

Now we introduce the central concept of this paper.

An m-path P, has { < m, i.e., it is a path of length at most m for some
fixed m with 1 < m < |V(G)|.

An m-path cover I' = { Py, Pp,, ..., P} of G is a set of pairwise disjoint
m-paths of G that span G. Thus each ¢ satisfies 1 < £, < m, and every
vertex of G lies in exactly one m-path, i.e., V(G) = Uj_; V (P, ) is a partition
of V(G).

With every m-path P, we associate a weight, w(F,), and then the weight
of I'is w(l') = [[,_, w(Py, ).

Definition 1.1  The m-path cover polynomial of G, P,,(G), is the sum of

the weights of all m-path covers of G, 1.e.,

where I' is an m-path cover of G.

The path-cover polynomial (or path polynomial) of a graph G is a spe-

cialization of the F-cover polynomial of Farrell [4] where F' is restricted to be
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a path, see Farrell [5]. Thus our m-path cover polynomial P,,(G) is a further
specialization to paths of length ¢ < m. See also Chow [2], and D’Antona
and Munarini [3].

It seems that this research is the first direct consideration of the m-path
cover polynomial of a graph. See McSorley, Feinsilver, and Schott [7] for
specialization to the case m = 2, where all classical orthogonal polynomials
are generated as 2-path cover polynomials of suitably weighted paths. For
related work see the theory of weighted linear species, developed in Joyal [6]
and Bergeron, Labelle, and Leroux [1]. In particular, Munarini [8] uses the
m-filtered linear partitions of a linearly ordered set to achieve some similar

results, see especially our Sections 7 and 8.

In Section 2 we introduce a weighted path P(m — 1,n), and find the
(m + 1)-term recurrence that its m-path polynomial satisfies. In Section 3
the matrix form of this recurrence is presented and yields a trace formula that,
in Section 4, gives the m-path cover polynomial of a suitably weighted cycle
C'(n). Section 5 interprets our results in terms of a model for time-dependent
Markov chains. In Section 6 a directed graph, T'(m), the edge-weighted m-
trellis, is introduced and so a third way to generate the solutions to the
above recurrence and trace is found. In Section 7 we model general constant
coefficient linear recurrences, and we derive various relevant formulas with
both algebraic and combinatorial proofs. Finally, in Section 8, we obtain a
relevant new integer sequence and relate this sequence to known sequences
in the literature.

Notation We write P,,[v1,Va, ..., V], instead of P, ([v1, Vo, ..., Vv]), for the
m-cover polynomial of the path [vq, va, ..., v/]; similarly we write w(vy, va, ..., v/
instead of w([vy, ve,..., Vi), etc.

Vertices in P(m — 1,n) (Section 2) and in subpaths of P(s,n) will be
labelled wu;; vertices in C'(n) (Section 4) will be labelled v;; and vertices in
T'(m) (Section 6) will be labelled w;.

For 1 < ¢ < m we use indeterminate z,; as the weight of a path of

length ¢ in GG. Throughout the paper m > 1 is fixed. In all Examples we set



m = 3, and many Examples have n = 4.

2 Weighted path P(m —1,n)

For m > 1 and n > 0 the path P(m — 1,n) has m — 1 + n vertices
{uy,ug, ..., Um—14n}. The first m — 1 vertices are weighted with weight 1
and the remaining n vertices are weighted, one by one, with the indetermi-
nates from the set {z11,212,...,21,,}. Thus all vertices, i.e., all paths of
length ¢ =1, in P(m — 1,n) are weighted. For 2 < ¢ < m a path of length ¢
in P(m—1,n) is weighted with 0 if its last vertex has weight 1, and with x;;
if its last vertex has weight 1 ;. The path P(0,0) is the empty path with no

vertices.

Definition 2.1  For n > 1 let f,,,, be the m-path cover polynomial of the
weighted P(m — 1,n).

Starting conditions are: f,, = 1 for —(m —1) <n <0.

As mentioned in Section 1, throughout this paper the path [uq, ugt1, - . ., Up)
is a subpath of the weighted P(m — 1,n).

We now derive our main (m + 1)-term recurrence:

Theorem 2.2 For a fized m > 1 and any n > —(m — 1),
fm,n = fl,n.fm,n—l + $2,nfm,n—2 + -+ fm,n.fm,n—m = Z $€,nfm,n—€- (1)
=1

Proof. The last vertex w1+, of P(m — 1,n) lies in every m-path cover
of P(m — 1,n). Suppose, in such an m-path cover, it is present as the last
vertex in an m-path of length ¢. Then this m-path has weight z,,, and begins

at Umin_¢. The sum of the weights of all such m-path covers is therefore

z@,an [uh Uz, ... >um—1+n—€] = Ié,n.fm,n—b



where [u1, ug, . .., Um—14n—¢| is a subpath of P(m —1,n). Now summing over
¢ gives the result. The initial conditions f,,, = 1 for —(m —1) < n <0

ensure that this equation holds when ¢ > n. [



Example 2.3  For m = 3 the weighted path P(2,3) is

1 0 1 T2 T1,1 T22 T1,2 Ta3 L1,3

o 90— o — 00— 0
Uy U2 us Uy Us

NG >

x3,1
NG >
€32
NG >
x3,3

The weights of paths of length ¢ = 1 and 2 (vertices and edges) are shown
above the path. Vertex labels and weights of paths of length ¢ = 3 are shown
below the path.

(=1 wlw] =wluy =1, wlus] = 11, wus| = 21,2, Wlus] = 213,

(=2 wlu,ug] =0, wlug, uz] = w21, Wlua, us] = T22, WU, us] = T23,

=3 wlur, ug,uz] = 3,1, wlug, uz, ug] = w32, Wluz, ug, us] = T3 3.

All 3-path covers of P(2,3), and their weights, are shown below:

3-path cover weight
w s ug uy us L1,121,271,3
*——o [ ] [ ] [ ] 0
ul u u3 uq us
S L1,2%1,302,1
W up us wg s T1,372,2
w s ug ug us L1,1%2,3
*——e *—— [ ] 0
ul u u3 uq us
*——e [ ] *—— 0
S L2,1%2,3
* ———0
w s uy uy us L1,221,373,1

* ————0
w s ug uy us L1,323,2
* ————0

“.1 “.2 u3z uq us $3,3
* ———0 *——
*—— * ——o—0 0



SO f33 = X1,1%1 2713+ X1 271 3T21 +T1,3T22+ T11T2,3+ T21T23+ L1201 331+
13732 + 23731 + 33

Example 2.4  Theorem 2.2 with m = 3 gives the 4-term recurrence for a
fixed n > 1,

fan = Tinfan—1 + Tanfan—2 + Tanfan_s.

Then the starting conditions f3 _o = f5_1 = f30 =1 give,

fsqa = x11+ w21+ 231,
f32 = T11T12 + T12%21 + T1223,1 + Ta2 + T32,
f33 = T11%12713 + T12013T2,1 + T13%22 + T1,1%23

+ To1T23 + X1,201,373,1 + T1,3%32 + T2,3%3,1 + L33,

f34 = T11%12713T1,4 + X1201,3T1,4T21 + T1,2T1,3T1,4%3,1 + T1,121,2%2.4
+ 211714223 + 12721024 + T12T24%31 + 1,371,422 + 1,371,473 2
+21,4T21%2,3 + T14T23%31 + £1,1T34 + £1,4033 + T2,1T34 + T2 2T24

+224%32 + T31T34

We check f3 3 from Example 2.3.

Definition 2.5 For 0 <r < m—1 we define P(r,n) as above for P(m—1,n),
except that we have r vertices instead of m — 1 vertices of weight 1 at the
beginning of the path. Thus P(r,n) has r + n vertices, and is formed from
P(m—1,n) by truncating from the right. All m-paths in P(r,n) are weighted
as in P(m — 1,n). We let P,,(r,n) be the m-path cover polynomial of the
weighted P(r,n). We note that f,,, = Pm(m — 1,n).



Example 2.6 For m = 3 and n = 4,

P3(0,4) = 211%12013T14 + T1101,2%2.4 + L1101 42,3 + 1,371 4%2,2
+ 211734 + 21,4033 + T22%2.4,

P3(1,4) = 211212%13T14 + £1,2%1,3T14T21 + £1,3T14T22 + L1121,4T2 3
+ 211712224 + £1,4T21%23 + £1,2T21T24 + 1,371 4732
+T11034 + 1,433 + 21034 + T22%24 + L2473 2,

P3(2,4) = f34, see Example 2.4.

For a fixed r with 0 < r < m — 1 we define the starting conditions

Pm(r,n) = (2)

0, if —(m—-1)<n<—r—1,

1, if —r<n<0

Y

We then have the following recurrence; the proof is similar to the proof

of Theorem 2.2, and setting » = m — 1 recovers Theorem 2.2.

Theorem 2.7  For a fized r with 0 <r <m—1 and anyn > 1,

Pp(r,n) = Z o Pm(r,n —0).

We now work with the fundamental solutions to recurrence (1):
For 1 < j < mlet ff(,{)n denote the j-th fundamental solution to (1). Thus

the ff(,f,)n obey the recurrence

ff(rz,)n = Z Ié,nff(i)n_ga (3)
=1
with starting conditions

1, iftk=m-—j,

f(j) g =
(e NS



where 0 < k< m — 1.
We have

m

fm,n = Z ff(r{,)n- (4)

J=1

Our next result expresses fy(,{)n as the difference of two m-path cover poly-

nomials. Consistent with (2) we set P,,(—1,n) =0 for every n > —(m — 1).

Lemma 2.8 Forn>1and1<j<m,

fibn = Punl(j = 1,m) = Pun(j = 2,m). (5)
Proof. By induction on n, first consider n = 1. Now ffi)l_g = 1 when

¢ =7 and ffi)l_g = 0 otherwise. Each fy(,{)n satisfies equation (3), so ffi) _
P I£,1f7(,f7)1_£ = x;1. Now consider the path P(j —1,1) shown below:

1 0 1 1 To1 L1l
o———O . o————O
U1 U9 Uj—1 Uj
N >
Lj,1

The first vertex u; lies in every m-path cover of P(j —1,1) so, similar to the
proof of Theorem 2.2, we have

Pn(i—1,1) = wlu1|Pn(j —2,1) + wlur, u2)Pm(j —3,1) + - - + wlug, ug, . ..

= 1-Pn(j—2,1)4+0-Pp(j—3,1) 4+ +xj1.

Thus, from above, ff,f?l =1 =Pn(j—1,1) —Pn(j —2,1), i.e., equation
(5) is true for n = 1.
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Now we have

m

(4) E ()
fm,n—l—l Len+1 fm,n—l—l—é
/=1

= Y 2 {Pnli—Ln+1—-0 = Pu(j —2,n+1-10)}
/=1

= > T Pul—Ln+1-0 = 2naPul(j —2n+1-1)
/=1 /=1

using equation (3) again at the first line, the induction hypothesis at the sec-
ond line and Theorem 2.7 at the last line. Hence the induction goes through

and equation (5) is true for all n > 1. n

Example 2.9  Using equation (3) and the starting conditions following
(3): For m = 3 and n = 4 the 3 fundamental solutions to recurrence (1) are,
f§14) = X11%12%13%1,4 + T1,1T12T24 + £1,1T1,4T2,3 + £1,371,4T22

+ 211734 + 21,4033 + T22%2.4,
f§24) = T12%13%1,4%T2,1 T T1,3%1,4T32 + T1,4T2,1%T23 + 1202124
+ X24X32 + T2,173 4,

3) _
f3,4 = 12713714731 T T1,4%23T31 + T1,2024731 + 3,173 4.

We check equation (4) using Example 2.4,
faa= 10+ 13 + 15,
We also check Lemma 2.8 using P5(—1,4) = 0 and Example 2.6,
2= Pe(0,4) = Pa(=1,4) = Py (0,4),
i1 = Pa(1,4) — Ps(0,4),
= Pa(2.4) - Pa(L4),



By iteration of such formulas, we have Corollary 2.10; where (ii) is a

specialization of (i) with r = 0.
Corollary 2.10

(i) For1 <j <m,

r+1
P(r,n) = f),
Jj=1

(ii) the first fundamental solution to recurrence (1) is given by

ff(r},)n = Pm(0> n)

The following Corollary 2.11 is a useful technical result.

Corollary 2.11  Forn>1and1<j5<m,

m

(4) _

Fhin; = > weei—iPoltmierij, - i)
=j

Proof. For j = 1 from Corollary 2.10(ii) we have ff(r})n = Pmn(0,n). Now
in the weighted path P(0,n) let vertex u; be covered by a path @, of length ¢
where 1 < ¢ < m. Then @y begins at vertex u; and ends at vertex uy, which
has weight 21 ¢; so w(Q¢) = x¢. Now in every m-path cover of P(0,n) vertex
uy must be covered by such a path @)y, so ff(r})n = e TP, - o un),
which is the above formula for 7 = 1.

For any 2 < j < m the path [upi1-j, ..., Um—14n] is a subpath of P(m —
1,n). In fact the weighted paths P(j—1,n) and [tmt1—j, - - -, Um—14n] (except

for vertex labels) are identical, so Py, (j — 1,n) = Pumftmt1—j, - - -, Um—14n)-
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From Lemma 2.8 we have

fPiisy = PalG=Lin+1=5)=Pu(i—2,n+1-)
= Polumti—j, s Umtn—j] — 1 P ftmgo—j, - o\ Umsn—j]
= sum of terms of Py, [tmi1—j, - .., Umsn—;| in which vertex
Um+1—; 1s covered by a path whose weight is an indeterminate,
as opposed to a path with weight 1.
So let vertex w,,4+1—; be covered by a path @, of length ¢ > 1. Then

Q¢ begins at vertex u,4+1—; and ends at vertex wm,4,—;, which has weight
Z1,041—j. Hence w(Q¢) = x¢41—j. Furthermore, because Q; ends at wp,1o—;
if ¢ < j thenm+/¢—j <m—1, hence w(Q¢) = 0, a contradiction; so ¢ > j.

Now, similar to above, the sum of the terms of Py, [tmt1—j, - - Umtn—j]
that contain xpsi1-; 1S o 41— i P [Umstet1—js - - - s Umsn—;]. Finally, summing
over the lengths ¢ of all possible paths )y, namely summing over ¢ with

J < ¢ < m, gives the result. L

This completes study of the weighted path P(m — 1,n).

3 Matrix formulation and Trace

We set-up our (m + 1)-term recurrence (1) in matrix form.
Let X,,0 = I,, be the m x m identity matrix, and for n > 1 let X,, ,, be

the m X m matrix

0 1 0
0 0 1 0
Xinn = s (6)
0 0 0 1
Imn Tm—1n Tm—2n °°° Lin
Let T denote transpose, and let F,,, ,, be the vector Fip, , = (frn—(m-1), - - - ; fmm)T.
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Then recurrence (1) can be written as:

Fm,n = Xm,n Fm,n—l,

where Fir0 = (frn—(m-1)s - - -» fmo) " = (1,...,1)". By iterating this equation
we have F,,,,, = Y., Fi 0, Where
(m) (1)
fy(n%_(m_l) Coe . f?(n,)n—(m—l)
m 1
fm,n—(m—2) oo fm,n—(m—2)
Ym,n - Xm,nXm,n—l e Xm,O = . (7)
m 1
famey e fan
(m )

With tr denoting trace, we have,

Lemma 3.1 Forn>1,

tr(Yonn) = Z fr(;z,)n—l—l—j‘

7=1
We now apply these results to the weighted cycle C'(n).

4  Weighted cycle C(n) and Trace

We introduce the weighted cycle C'(n) for n > 1, shown in Fig. 1. It has n
vertices labelled {vy,vs, ..., v,} and n edges.

It is weighted as follows: for 1 < ¢ < m, let P, be a path of length ¢ that
traverses C'(n) clockwise and ends at vertex v;. We define w(FPy) = xy;.

Thus the weighted cycle C'(1) is an isolated vertex v; with weight w(vy) =
x11; and the weighted cycle C'(2) has 2 vertices {v1,v2} with w(v1) = 21,
and w(vy) = x19, and 2 edges: edge (v1,v2) with w(v1,v2) = xa2, and edge
(v2,v1) With w(ve, v1) = 2.

In Fig. 1 only the weights of paths of lengths ¢ =1 and 2 are shown.

14



Figure 1: Weighted C(n)

Lemma 4.1  For 1 < a < b < n the following m-path cover polynomials,

the first which comes from C(n) and the second from P(m —1,n), are equal:
Pr[Vay -« 5 0p) = P [tm—14a, - - - Um—1+b)-

Proof. Except for vertex labels, the weighted paths [v,, ..., ] in C(n)

and [Um—1+a,-- -, Um—1+5] in P(m — 1,n) are identical. Hence the result. =

Definition 4.2 For n > 1 let C,,(n) be the m-path cover polynomial of the
weighted C'(n).

In the following, when necessary, we reduce subscripts on u, v, and the
second subscript on x, all modulo n. We write u,.s = uy, vnyy = vy, and
Tont+t = Loy, €LC.

The following Theorem 4.3 is the main result of this section. Recall the

matrix Y;,, from equation (7).

Theorem 4.3  Forn > 1,



Proof. Consider the weighted C'(n). Vertex v; lies in every m-path cover
of C(n). Suppose, in such an m-path cover, it is covered by a path P, of length
¢ that begins at v,_, and ends at v,,—,_14¢, for some p € {—1,0,1,...,0—2}.
Now 1 < /¢ <m, ie,p+2 < ¢ <m. The sum of the weights of all such
paths is then N

Z Tom—p14+0Pm [Vn—pits - -+ s Un—p—1].

(=p+2

But pe {-1,0,1,...,m — 2}, so

m—2 m
Cm (TL) = Z Z f@,n—p—1+€Pm ['Un—p—l—b o >'Un—p—1]

p=—1/¢=p+2

m m
= E E o nttr1— P [Unteroj, - o Ung1—j]

=1 t=j

m m
= E E o p41—i P [Umter1—j, - - - s Um—j]

=1 t=j
m

= Z ff(r{,)n+1—j

j=1

= tr(Yon),

)

letting j = p + 2 at the second line, and using subscript reduction modulo n
and Lemma 4.1 at the third line, then Corollary 2.11 at the fourth line, and

Lemma 3.1 at the last line. ]

Example 4.4  For m = 3 and n = 4 consider the weighted C'(4) in Fig 2.
The 3-paths are weighted as follows,
(=1 wlv] =x11, wve] = 212, Wvs] = 213, Wva] = 714,
(=2 wlvy, v = a9, w[ve, v3] = Ta3, W[, V4| = Ta4, W[Vg, V1] = 227,

(=3 CU[’Ul,'UQ,'Ug] = 13,3, W[U2>U3>U4] = T34, W[U3>U4>U1] = T3,1, W[U4>U1>U2] = I3,2.

)
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X ) . :
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Xaon N X34
3,1 . ; .

Figure 2: Weighted C'(4)

By considering all 3-path covers, the 3-path cover polynomial of the weighted
C(4) is

C3(4) = 11719713714 + T11712T24 + T12T13T2,1 + T1371 4729
+ 211214223 + T1,3T32 + £1.4033 + T1,1T34 + L1231

+ 221223 + T2 272 4.

Similar to Example 2.9, the recurrence (3) and the starting conditions
following (3) give

(1)
f374 = X11%12%13%1,4 + T1,1T12T24 + £1,1T1,4T23 + £1,371,4T22

+ 211234 + L1433 + T22T2 4,

(2)

33 = X12T1,3T21 + T1,3T32 + T21T2,3,
3

32 — Z12T31.

17



Together with the following matrices

YV3,4 = X3,4X3,3X3,2X3,1X3,0

0 1 0 0 1 0 0 1 0 0 1 0
= 0 0 1 0 0 1 0 0 1 0 0 1
X34 T24 T14 xr33 T23 T13 xT32 T2 T12 r31 T21 T11
Z1,273,1 Z1,2%2,1+23,2 117124722
T1221.3%3 14T 3T T1,373,2102,1%23 T11T2 3+01,3%2,2
— 1,241,323,1 2,323,1 +"E1’2(E1’3.’22’1 +"E1’1"E1’2"E1’3+"E3’3

T1,2%24%31+T1,221,3%1 4231 T1,222,4%21+21,221,3%1,422,1+21,3%1,423,2 21,173,4+%1,1%1,202,4+%1,171,472,3
+x1,472,3%31+%3,173,4 +x1,4%2,122,3+22,1C3,4+T2,4T3 2 +1,171,2%1,371,4+%1,3%1,472,2
+x1,4233+T2222.4

we may check the results from Lemma 3.1 and Theorem 4.3,

] 1 2 3
Ca(4) = tr(Yau) = D f0_ = fill + £33 + 13,

5 Markov chain interpretation

In this section we consider an interesting special case, where in the matrix
formulation of the recurrence we have stochastic matrices. A matrix of the
form (6) can be considered a transition matrix for a Markov chain with m

states under the conditions
dwim=1, 2, >0j.
J

Because the probabilities x;, vary with n, these are the transition matrices
for a non-homogeneous Markov chain. Note also that, as transition matrices
are multiplied from left to right, the process is effectively time-reversed. In
fact,

Pljump at time v from state m to state j| = Tym—j11,0-141 -

This process is often referred to as a ladder process. From any state j, with

7] < m, the process jumps with certainty to j+ 1, thence to j+ 2, etc., up the

18



ladder, till it reaches state m. At that point it jumps randomly back down
the ladder to one of the intermediate states 7, 1 < j < m, and the procedure
repeats. Because all of the matrices are stochastic, the row sums of matrices

such as Y, ., see equation (7), will all equal 1. Recall from Section 3 that

fm,n—m—l—l 1
= Ym n

)

fm,n 1
Thus,

Proposition 5.1 In the stochastic case, all of the path polynomials f,
evaluate to 1. ]

5.1 Homogeneous case

In the case of constant coefficients (see equation (6)), sending xp; — x¢, Vi,

we drop the dependence on n and write

0 1 0
0 0 1 0
Xp =1 : : SRR I
0 0 0 e 1
Tm LTm—1 Tm—2 - T1
with Y x; = 1. Now
Ym,n = (Xm)n

is the n-step transition matrix. It is easy to see that a row vector (on the
left) fixed by X,, is

(Tos T+ Ton—1y+ ooy Ty + Ty + -+ + 22, 1)

Furthermore, under the assumption x; > 0, V7, it is immediate that the chain

is irreducible and aperiodic, hence ergodic. That is,

lim Y,,, =Q

n—oQ
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exists and has equal rows, each row proportional to the left-invariant vector

indicated above normalized to row sum 1.

Example 5.2 Take the uniform case z; = 1/m, 1 < j < m. Then we have
the fixed vector (1,2,3,...,m) and the limits

lim f9) = M ]
n—oo * " m(m + 1)

Thus, for large n, if we randomly choose an m-path cover of P(m —1,n) then
2(m—j+1)

(1) In

the probability that it belongs to the j-fundamental solution is

particular, the first fundamental solution satisfies

2

J o = T

So the m-path cover polynomial model provides a combinatorial model
for non-homogeneous Markov chains. A closely related model, the trellis, is

discussed in detail below in Section 6.

6 Edge-weighted m-trellis T'(m)

In this section we deal with the edge-weighted m-trellis, T'(m), shown in Fig 3,
and give another method of generating fy(,{)n and C,,(n).

The vertices of T'(m) are labelled {wy,wo, ..., wy}. All edges in T'(m)
are directed, with arrows as shown. All circuits in 7'(m) are directed, and
are traversed in the direction of the arrows. We use S to denote a directed
circuit in 7'(m), which we simply call a circuit. A circuit is based at vertex
wj if it begins and ends at vertex w;. A circuit may pass through the same
vertex more than once. The length of a circuit S is the number of edges in it.

The weights on the edges of T'(m) are taken from {1,214, ..., Zmq} Where
d > 1, as shown. The weight of circuit S, w(S), is the product of the weights
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Wi 1 Win—1 w3 1 w2 1 w1

Figure 3: Edge-weighted m-trellis T'(m)

of all the edges in S. If the edge with weight z; 4 is traversed as the k-th edge
in S, then x; is a factor in w(S); thus the meaning of x; 4 here is different

from that in Sections 2 and 4. We allow empty circuits with length 0.

Definition 6.1  Let 7,,,(w;,0) = 1 and, for s > 1, let 7,,(wj, s) be the sum

of the weights of all circuits in 7'(m) that are based at vertex w; with length s.

Notation We use standard multiset notation: 1¥ = 1-1---1-1, and 1°

k
means no occurrences of 1.

Theorem 6.2  For s > 0,
Tm(wb S) = Pm(0> S)' (8)

Proof. By strong induction on s. Now 7Z,,(wy,0) = P,,(0,0) = 1, hence
equation (8) is true for s = 0. We now assume that 7,,(wi,s’) = P, (0, )
for all 0 < ¢ < s. Consider any term in 7,,(w;,s + 1), it is the weight
of some circuit S in 7T'(m) based at vertex w; with length s + 1. Clearly
S ends with a k-cycle based at vertex w;, for some k£ with 1 < k£ < m.

Thus the last edge of S is (wy,w;), with weight xj s11, and the previous
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k—1 edges are (wy, wg_1), (Wg—1, Wk—2), - . ., (w2, w1), each of weight 1. Hence
w(S) = Tn(wy, s +1 —k)1* oy oy Thus

Ton(wy,s+1) = Z Tist1Tm(wr, s + 1 — k)
k=1
= Z Tkst1Pm(0,s +1 — k) = Pn(0,s + 1),

k=1

using the strong induction hypothesis and then Theorem 2.7. So the induc-

tion goes through and equation (8) is true for all s > 0. n

Let 7,¢(wy, s) be the expression obtained when every indeterminate x,
in 7, (wy, s) is replaced by x4 p4c; similarly for other expressions.

Recall that [wm, ..., Un-1+s] is & subpath of P(m — 1,n) for s > 0; for
s =0 the path [, Um-1] is the empty path P(0,0), and P,,(0,0) = 1.

Corollary 6.3 Fors>0and0<c<n—s,
Tﬂi—c('UJ1, S) = ]P)m [um+c, e ,um_1+s+c].

Proof. For s = 0 we have 7,7°(wy,0) = Pu[tmic, Um—14c] = 1. For
s > 1 then [um,...,unm-1+s] is a subpath of P(m — 1,n) so, for every
n > s, we have Pp,(0,s) = Pp[tm, ..., Un-14+s]. Now, from Theorem 6.2,
Tm(wi,s) = Pm(0,s), so T, (wy,s) = PL(0,8) = Pultmics - s Um—1+stc)s

as required. -

We now connect 7,,(w;,n) and the fundamental solutions of the (m + 1)-

term recurrence (1).
Theorem 6.4  Forn >0,

Tm(wj> TL) = ff(;fb,)n—l—l—j‘
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Proof. Consider a circuit S in T'(m) based at vertex w; with n edges.
Then, for some 0 < k < m — j, the first k£ edges in this circuit are
(wj, wjt1), (Wjg1, Wjta), - . ., (Wjtk—1, wj+k), followed by edge (wjix,wq) end-
ing at vertex wy. These edges contribute 1%z 111 to w(S). Now, starting at
vertex wy, the last j—1 edges traversed in S are (wq, we), (w2, w3), . . ., (wj_1,w;),
contributing 17! to w(S). Hence w(S) = zj pp1 T o (wy,n — j — k).

Thus

m—j
Tm ('LUj, n) = Z $j+k,k+177:(k+l) (w1> n— ] - k)
k=0

= Z oo T (wy,n — )

=
m

= E o p41—i P [Umter1—j, -+ s Umtn—j]
l=j

(4)
=/ mj,,n—l—l—j7
putting ¢ = j+k at the second line, then using Corollary 6.3 with ¢ = /+1—
and s = n — ( at the third line, finally using Corollary 2.11 at the last line. m

Example 6.5 Consider T'(3), the edge-weighted 3-trellis, see Fig. 4.
X34

w3 (% w1

Figure 4: Edge-weighted 3-trellis T'(3)

(a) 7T3(we,5) = sum of weights of circuits of 7'(3) based at wy with length 5
= T21T1271,3T1.4 1+ X21T1.2 1 2.4 1+ Z21 1-1 X34 1

2
+x21 12930141 + 12300130141+ 123210041 = ?E,4)>
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as in Example 2.9.

(b)  7Z3(ws, 6) = sum of weights of circuits based at ws with length 6.
We observe that the first edge in such a circuit is edge (ws,w;) of weight
x31, hence x3; is a factor of every term in 75(ws, 6) = féif, consistent with
Example 2.9 again.

Finally, we bring the results from Lemma 3.1 and Theorems 4.3 and 6.4
together in the following Theorem 6.6.

Theorem 6.6 For1l <n <m,

Crn(n) = tr(Yonm) = > Tom(wj, ).
j=1
N
Example 6.7  Again, from 7'(3), we have, C5(4) = 23:1 T3(w;, 4).
T3(wi,4) = 211712013014+ T11012 1 %04 + 211 1@03014+ 2111 1234

+lagom1 3014+ Lwgo Loy + 1-1wg3r 4= fyf,lzl),
T3(wo,4) = 291120131 +2o1 12031+ 1a300131 = 3523)7

T3(ws,4) = x311101-1= 3532),

which are consistent with the above definitions and results, and with Example 4.4.

7 Homogeneous case, z/; — Iy

In this section, we consider the case of constant coefficients, i.e., where the
indeterminates x,; are independent of <.
Notation We use * to modify a path or expression or matrix in which
weights or indeterminates x,; are replaced with z,.

First we review some known properties of m-path polynomials using stan-
dard techniques. Then we show how our model recovers these results combi-

natorially.
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7.1 Constant coefficient recurrences
This subsection mainly establishes notation and recalls basic results of inter-

est.

Consider the recurrence
Yn = Z Ti Yn—i (9)
i=1
We begin with the first fundamental solution. The following is standard
and readily derived via geometric series and multinomial expansion.
Proposition 7.1 We have the generating function and formula
1 S1+ S22+ -+ S,
hpt"'= —— = TELS2 L pSm g
> e S (I e

. e Sm
n>0 1— § 2t n>0 S flsy=n ’
=1

giving the (first) fundamental solution, h,, to the recurrence, i.e., with initial
values h; =0, —(m —1) <i <0, hg = 1.

The matrix X,, takes the form, cf. Section 5.1,

0
0 0 1 -0
X,, =
0 0 o .1
Tm Tm—-1 LTm—2 - T1

so that det(/ —tX,,) =1— Z z;t'. Define the (r+41)** fundamental solution
i=1
to recurrence (9) to be the one with initial conditions

yi =0, for —(m—1)<i<0, i#—r
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and denote this fundamental solution by hgﬂ), with h, = A Then the

entries in the bottom row of (X,,)" are exactly the values
(X)) gy = B4

In general,
(X)) iy = W0 (10)

The fundamental solutions for » > 0 can be expressed in terms of the first

fundamental solution as follows.

Proposition 7.2 The (r + 1)* fundamental solution to the recurrence (9)

s given by
r—1
hg—i—l) - hn—l—r - Z hn+k$r—k>
k=0

where h,, denotes the first fundamental solution.

Proof.  We will illustrate for » < 2 that shows how the general case works.
We have

hgzl) = hn,
A = hyyy — 1 hy,

hf’) = hn+2 — I hn+1 — X hy.

For r = 1, we obtain 0 for nonpositive n, except for n = —1, as required.
Similarly, for » = 2, for nonpositive n we obtain 1 precisely for n = —2,
otherwise we get 0. Note that the subtractions are necessary to cancel off
terms when 0 > n > —r. Since the coefficients are independent of n, these
are indeed solutions to the recurrence. Thus the result. ]

Now for the trace,

Proposition 7.3 The trace of (X,,)" is given by

tI‘(Xm)n = Z] hn_j Xj.
j=1
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Proof.  From (10), we have, using the above Proposition 7.2,

h(m—i—l—l)

n—m-1

tr(X,)" =

i

3
L

h(i—l—l)

n—i

N

3
L

B i—1

hn - Z hn—i—l—k zi—k]
L k='0

hn — Z hn_j [L’j]

L J=1

i

m—1
= mhn - ZZhn_j[L’j

i=0 j=1

1

3
L

Il
o

i

(next, interchanging the order of summation)
m—1m—1
S ) S

=1 i=j

m—1
=mhy =Y (m—j)hnj
j=1
m—1
+ Z ] hn_j €y
j=1

m—1
=m [hn - Z hn_j Xy
Jj=1

Jhnjx; (by the recurrence for {h,}).

M

1

J

Remark 7.4 These are a variation on Newton’s Identities relating power
sum symmetric functions and elementary symmetric functions. Here, the

homogeneous symmetric functions, h,, play a role as well.
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7.2 Combinatorial proofs

We now show how these formulas may be derived combinatorially by our
model with the specialization xy; — xy. The weighted path P*(2,3) looks
like

 ————©0 & & —— 0
(VA1 U9 Uus Uy Us

N >

T3
N >
T3
NG >
T3

Notation. Consistent with the above, we use h or H to represent expres-
sions in which we have replaced xy; with z,. Thus H,,(r,n) = P* (r,n), for
0 <7 <m — 1, see Definition 2.5 of weighted path P(r,n).

7.2.1 First fundamental solution

Proposition 7.1 is readily seen from the weighting of path P*(m — 1,n). For
the first fundamental solution, there are no vertices with weight 1, and no
edges weighted 0. The first vertex has weight x1, and so on. In an m-path
cover the exponent sy is the number of paths of length ¢, for each 1 < ¢ < m,
and the multinomial coefficient counts the number of m-path covers obtained
from any fixed set of m-paths. So this model gives a visual interpretation to

the analytic formula.



7.2.2 Higher fundamental solutions

Start with

Lemma 7.5  For a fited r with 1 <r <m—1 and anyn > 1,

Ho(r,n) — Hp(r —1,n) = Z THm(0,n+17 —10).
=r+1

Proof. For r > 1, consider the weighted path P*(r,n). The first vertex
u; must lie in every m-path cover of this path, say on a path ), of length
¢ for 1 < ¢ < m, starting at uy. If £ =1 then w(Qy) = w(uy) = 1, and the
sum of all such m-path covers is thus 1 - H,,(r — 1,n). If 2 < /¢ < r then @y
finishes at vertex u, where w(uy) = 1, so w(Qy) = 0. Andifr+1</4<m
then @) finishes at vertex w, where w(us) = z; and so w(Q,) = xy, and
the sum of all such m-path covers is 2,/H,,(0,n + r — £). Hence H,,(r,n) =
Ho(r —1,n) + >0, 1 eHm(0,n 47 — £), and so the result.

Now for a combinatorial proof of Proposition 7.2.

Theorem 7.6 For the fundamental solutions to the recurrence for the ho-

mogeneous path polynomaials, we have

hg—i—l) = hn—l—r - Zféhn+r—£ .

/=1

Proof. By our definitions and Corollary 2.10 (ii) we have h, = 7(,%); =

P (0,n) = Hm(0,n). And, from Lemmas 2.8 and 7.5, we have

m

hg—i—l) = Hm(’f’, n) - Hm(r - 1,71) = Z l’gh"'”_g' (11)

{=r+1
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Now
hnir = Hm(o,n—l—T’)

m
- E féhn+r—é
/=1
r m
- E fﬁhn+r—é+ E féhn+r—€
/=1

l=r+1

- Z Ighn‘i'?“—f + hg“-l-l)’

/=1

where, at the second line, we note that in every m-path cover of the weighted
path P*(0,n + r) vertex u,, must lie on a path @, of length ¢ and weight
x¢ where 1 < ¢ < m, and at the last line we use equation (11). This gives

the result. -

7.2.3 Trace formula
We now give a combinatorial derivation of the trace formula, Proposition 7.3.
First let 7,,(n) be the sum of the weights of all circuits of length n in

T*(m), the m-trellis with edge-weights xy; replaced by xy, i.e., T, (n) =

> o1 T (wy,m), see Section 6.

Theorem 7.7  For anyn > 1,

m

tI‘(Xm)n = Zjl’jhn—j-
j=1
Proof. We recall that the indeterminates in any term of 7;,,(n) are initially

ordered according to the edges traversed in the corresponding circuit, see

Example 6.7. Let X = x;xp, 2y, --- x4, be a typical ordered term in 7,,(n)
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with all 1’s removed and with first indeterminate x;. We first show that term
X occurs j times in 7, (n).

When there are two successive indeterminates z, and xy in X then, in
the corresponding circuit, the edges traversed are: first (wy, w;) of weight zy,
followed by the ¢'—1 edges (w1, ws), (wa, w3), ..., (we_1,we) each of weight 1,
then finishing with the edge (we, w;) of weight x,. Hence pair z,z, becomes
2,1 'zp when the indeterminates are considered as weights on edges in a
circuit in 7% (m).

Now, because the first indeterminate in X is ;, any circuit corresponding
to X must be based at vertex w; for some j' € {1,2,...,5}. Hence X will

appear in 7,,(n) as
. B B B B L,
VU g1 gy 127 g 157 1 gy, 197

for each 5/ € {1,2,...,j} in Z,,(n). There are j such j’, so there are j oc-

currences of term X in 7y, (n).

Now consider an occurrence of X' in which j* = j, namely,
210y 127 g 157y, 1L

So,
X

b=l 1le—1 .. qls—1 -1
11 =1 l’gll 1’521 SR Ty, = Z, say.
J

Then the sequence of edges traversed in 7*(m) corresponding to Z begins at
wy and ends at wy, and so is a circuit based at wy, with lengthn—1—(7—1) =
n —j. Thus Z € T*(wy,n — j). Conversely given any Z € T *(wy,n — j)

then 2;Z 177! is an occurrence of term X starting with 1° and ending with
P ‘ ‘
2’7? = Tm(w1> n-— ])7 and Zj’:j X = ijT):(w17 n-— ])

j
Now we can partition the weighted circuits of 7*(m) of length n by their

19=1. Thus

first indeterminate xz;, (ignoring the edges of weight 1 preceding this first

indeterminate). That is, we can partition the terms of 7,,(n) by their first
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indeterminate ;. So, using the above arguments we have,

Z]zj 'lUl,n ])

Furthermore, 7*(wy,n—j) = P:(0,n—j) = fmn _; = hnj, the first equality
is Theorem 6.2 and the second is Corollary 2.10(ii), and the third is by
definition of h,. So finally,

tr(X)) = Z]:EJ (w1,m — j) Zj:cjhn_j.
j=1

Example 7.8 See Examples 4.4 and 6.7. Here m =3 and n =4

tr(X3) = T3(4) = 2} +423xs + dwy23 + 225
= 21(2} + 22129 + 23) + 272(2] + 72) + 373(71)
= ay( (1))+2£172( (1))_|_3 5( (1))
= x1h3 + 2x9hs + 3x3hy,

where, at line 2, we have rearranged the terms according to their first inde-

terminate x;, using Example 6.7, and combined like terms.

Remark 7.9 From Theorem 6.6, and our definitions of matrices Y, , and

X, from Sections 3 and 5.1 respectively, we have the following equalities:

Cr(n) = tr(Y,) = > To(wj,n) and  tx(Yy,,) = tr(X7,).

J=1

Thus, from Theorem 7.7,

Z (wj,n Z]ZEJ (wy,n — j).
j=1
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8 Sequences, z;; — 1

In Section 7 we specialized by replacing weights x,; with z,. In this section
we specialize further by replacing all weights x,; with 1. We denote this
operation by #. We then use these # matrices to count m-path covers of
the path and cycle.

Recall matrix X,,, from equation (6), we define matrix Z,,:

]
[
—

Zm =X}, = :
1
1 1 --- 1

Similarly, let ¢,,(n) = C#(n) be the expression C,(n) evaluated when all
zg; =1 So V¥ =2Z and cn(n) = tr(Y7,) = tr(Z},). Thus c,(n) counts
the number of m-path covers of the weighted C'(n), or of an arbitrary n-cycle.
(Cf., Corollary 11.1, Section 8, Farrell [5].)

Theorem 8.1 For 1 <n <m, we have ¢,(n) =2" — 1.

Proof. Let [n] = {1,2,...,n} and let C[n] denote the cycle whose vertices
are the elements of [n] arranged clockwise in a circle. Now n < m so any
path cover of C[n| will be an m-path cover. We show that the number of
path covers of C[n] is 2" — 1:

Given a subset {i1,12,...,4;} of [n] with {i; < iy <--- < i} we define a
path cover [i1,i14+1,...,ia— 1], [io,t0+1,.. . is—1], ..., [ix, i+ 1,..., 01— 1]
of C'[n]. Conversely, given a path cover [i1,i1+1,...,ia—1], [i2,i2+1, ... i5—
1, ..., [k i+ 1, ..., i1 — 1] of C[n] we take the first vertex from each path to
form a subset {i1,19,...,i} of [n], and then rearrange its elements to form
a subset of [n] with increasing elements. These two operations illustrate a
bijection from the set of non-empty subsets of [n] to the set of m-path covers
of Cln|. Hence ¢, (n) = 2" — 1. n
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From recurrence (1), Lemma 3.1 and Theorems 4.3 and 8.1: for n > m+1

we see that ¢,,,(n) obeys the m-anacci recurrence,
cmn) =cp(n—1)+cn(n—2)+ - +cpn—m) = Zcm(n — 1),
=1

with starting conditions ¢,,(n) = 2" — 1 for 1 <n <m.

In the square array below ¢,,(n) is the (n, m) entry, for n,m > 1. Column
m is determined by the above m-anacci recurrence. We observe that the
(m, m) main diagonal entry is ¢,,(m) = 2™ — 1.

n\m 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3
4 7 7 7 7 7 7 7 7
7 11 15 15 15 15 15 15 15

21 26 31 31 31 31 31 31
18 39 51 57 63 63 63 63 63
29 71 99 113 120 127 127 127 127
47 131 191 223 239 247 255 255 255
76 241 367 439 475 493 502 511 511
1 123 443 708 863 943 983 1003 1013 1023 ---

C B O 00O U W
RPHRERERREREARRR&
—
—

Consider the triangle, in bold, where ¢,,(n) is the (n,m) entry for all
n >1and 1 < m < n, it counts the number of m-path covers of a cycle
with n vertices. We have entered the sequence obtained from reading this
triangle row-by-row to the Online Encyclopedia of Integer Sequences [9]; it
is sequence A185722.

Each of the 10 columns of the above square array appears as a sequence in
[9]; e.g., the second column (m = 2) gives sequence A000204, and the third
column (m = 3) gives A001644, etc.. Thus we have a new combinatorial
interpretation for each of these sequences, and a connection between them.

A closely related sequence is A126198 (replace ‘k’ by ‘m’ in its descrip-
tion): Let T'(n,m) be the (n,m) entry of the triangle corresponding to
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A126198, then T'(n,m) counts the number of compositions of integer n into
parts of size < m. Now consider n vertices arranged in a path. A composi-
tion of n into parts of size < m corresponds naturally to an m-path cover of
this path with n vertices by identifying a part of size ¢ in the composition
with a path of length ¢ in the corresponding m-path cover. This correspon-
dence can also be reversed. Thus in our terminology, 7'(n, m) is the number
of m-path covers of a path with n vertices; and, from Corollary 2.10(ii) and
our operation #, we have T'(n,m) = W = P#(0,n). The (m,m) main
diagonal entry in this triangle is T'(m,m) = 2™ ! (as is well-known, there

2m=1 compositions of m), and column m of this triangle is determined

are
by the m-anacci recurrence,

Tn,m)=Tn—1,m)+Tn—2,m)+---+T(n—m,m) = ZT(n—E,m),
=1
for n > m + 1, with starting conditions T'(n,m) = 27! for 1 <n < m.

The (n,m) entry in our triangle, ¢,,(n), counts the number of m-path
covers of a cycle with n vertices. We have starting conditions ¢, (n) = 2" —1
as opposed to T'(n,m) = 2"~ above, for 1 <n < m.

Furthermore, from above and the definition of matrix Y;,,, from equa-
tion (7), we have T'(n,m) = (D% — the (m,m) entry of matrix Y,# = Z.
Thus both

cm(n) =tr(Zy) and T(n,m) = (Z)@mm)
can be obtained from matrix Z”. This gives a new derivation of T'(n,m),

and so of sequence A126198.

Example 8.2 m =3 and n = 4.

010 1 2 2
L3 = (0 0 1) and Z3 = (2 3 4) ,
1 11 4 6 7
gives

c3(4) =tr(Z;) =11 and T(4,3) = (Z5) 33 =T,
see Examples 4.4 and 6.7, and 2.6.
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