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We find realizations of Lie algebras of “type-H” as vectors fields. These are used
in a novel approach to representing group elements as products of one-parameter
subgroups (splitting formula) and for finding polynomial matrix elements of
representations for the Lie group, in particular irreducible representations. Special
classes of polynomials, Appell systems, and polynomial solutions to heat equations
(via a Feynman—Kac type formula) are found. Additionally, we show that the Lie
algebra generates Gaussian random variables. The general form of stochastic
processes on the group is given, and Brownian motion is discussed in particular.
1 1993 Academic Press, Inc.

1. INTRODUCTION

In [20] Kaplan introduced a class of nilpotent Lie groups which arise
naturally from the notion of composition of quadratic forms. Since this
family of groups is closely related to (and includes) the Heisenberg group,
they are referred as groups of Heisenberg type or simply of type-H. In [20]
he showed that the standard (sub-)Laplacians on such groups admit
fundamental solutions analogous to the case of the Heisenberg group [13].
The fact that type-H groups have interesting analytic as well as geometric
properties sparked interest in them. The geometry and structure of type-H
groups, including in particular the Heisenberg group, have been studied by
Kaplan [18,19], Kaplan and Ricci [26], Ricci [25], Koranyi [23],
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REPRESENTATIONS OF TYPE-H GROUPS 147

Koranyi and Cowling [24]. The algebraic structure particularly may be
found in the works of Riehm [27].

In this paper we present new results concerning polynomial representa-
tions and stochastic processes on such groups. This work is based mainly
on the studies [4,9,10, 11]. The approach taken here analyzes various
features of type-H groups so that the detailed structures involved may be
clearly seen.

From the point of view of partial differential equations, there has been
much work on hypoellipticity of operators on nilpotent groups. See, for
example, [3, 13, 16, 28].

Remarks. 1. Note the following summation convention: repeated
Greek indices are considered to be summed regardless of position. When
summations (or products) are written explicitly, Latin indices will be
employed.

2. For vector variables (i.e., subscripted variables) and multi-indices
bold-faced notation is used. For example, X=(X,,.., X,,). And X .- Y=
X,Y,=Y X,Y,, for example. Denote |x|*=x-x=x,x,.

3. When the variables x are understood, denote d/dx, by D; and D
by V. Differentiation with respect to s or ¢ is denoted by a dot.

2. Tyre-H LIE ALGEBRAS

Starting with &, ¥~ (not completely arbitrary, cf. [20]) vector spaces
over R, the corresponding (two-step) nilpotent Lie algebra 4" =¥ ® %
(the symbol @ here denoting the orthogonal direct sum) is determined by
a mapping j: & — End ¥ with the properties, for Ye &,

[J(Y)X]=|Y] |X]
HYY=—|Y\* 1 (2.1)
Y [ X X=X XD,

where ¢{ , > denotes a given inner product on .4". The space & is the
center of the algebra. Note that j|,.=0.
Now fix orthonormal bases {X,}, {z;} of ¥ and Z, respectively. Let

S = J(z4). (2.2)

Denote
dim ¥ =m

dim Z =n.

(2.3)
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Define the matrix elements
Ji= <X, XD, (24)

For each non-zero ze %, j(z) is surjective. For z=c;z;€ &, j(c;z;)=c,;J;.
Each J, is an isometry and J? = -1, ie., J, is skew-symmetric. Recall the
Clifford algebra relations [20]

JkJ/+J/Jk= —25k11' (25)

The following useful proposition is immediate.

2.1. PROPOSITION.  For any scalars ¢ = {¢,},

e Je JF= le|? 6,

e (2.6)
c;JPe, V= —le|?é,.
We now find the basic commutation relations. First, calculate
(z,, [Xk,X1]>:<JersX1>=Jik- 2.7)

That is, [X,, X,]=z,J%. Denoting this by z-J* (here we avoid boldface),
thus

[Xe, X, ]=z-J% (2.8)

3. DUAL REPRESENTATION

Using coordinates of the second kind we can dualize the action of the
elements of the algebra, giving realizations as differential operators (vector
fields). See [9, pp. 174-176]. Here we use the well-known relation

eXYe X=Xy, (3.1)

Define the group element g(«y, ..., 2, 1, ..., B,) by

g=emX1 ,_'eameeﬂnzl _,,eﬂn:n' (3‘2)

The actions of left and right multiplication dualized to vector fields acting
on functions of the variables «,, ..., «,,, B, .., 8, are given by

X, g=X g=e"... X e%% ... ¢/ 4 commutation terms,

) 3.3)
gX;=X}g=e¥...e3%X, .. e/ 4 commutation terms,
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and are given similarly for z}, z* Note that the map X — X* is an algebra,
and hence a Lie homomorphism, while the ¥ map is an anti-
homomorphism.

3.1. PROPOSITION. For the action on the left,

X'=0/do,+ Y. «,J2 /0B,
oy (3.4)
2y =10/0Bs.

And for the action on the right

X¥=0/0a;+ ) aJ d/ep,
i>J (3.5)
z¥=0/0B,.
Proof. A sample computation for each case suffices to illustrate the
structure, cf. (3.1),
X3€12X2 =€12X1€7 a3X1X3612X2=€12X:(X3 _ azz . J}Z)
= X 40,z J7) (3.6)
e NX, = (X, +a3z-JP)en™. | 3.7
The adjoint representation, denoted by X', corresponds to the action by

conjugation:
eXg=e"¥g=e¥ge ¥ =X X'g. (3.8)

3.2. PROPOSITION. The adjoint representation is given by

X =a,J% 8/3B,. (3.9)

J 2V u
Proof. This follows directly from (3.4), (3.5), and the relation X =
X; -xr 1

Next, the dual representation is used to derive a general splitting
formula for Lie groups. This shows another important aspect of the dual
representations.

4. SPLITTING FORMULA

The technique given here is applicable to general (local) Lie groups.
Let {&,, .., ¢y} be a basis for a Lie algebra. Define group elements,
corresponding to coordinates of the second kind,

gloty, oy oy) = €%151 .. @SN
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and, with X=4,¢, denoting an element of the Lie algebra, the
corresponding group element, in terms of coordinates of the first kind,
{4}, is e*. Let {{*}, {£]}, denote respectively the right and left dual
representations (see previous section):

glay, o ay) =5 glay, .y ap)
: (1)
é_/g(al’ ey uN)Z ij g(ot,, vy fXN).

The {£*} and {¢]} are vector fields acting on functions of the {a,}. With
a denoting the variables («, ..., 2, ), define the matrices n}(a), n}k(a) by

* =% (a) 0/0a,
¢ =mi(2) 0/ 0a 42)
& =mnl(a)d/da,.

The notation Ej denotes either the left or the right representation with the
corresponding relation

(4.3)
4.1. LeMMA. Let X =A,C,. For the one-parameter subgroup generated

by X, let
exX — 61““" Sl ezy(,\'ié{q. (44)

Then the coordinates {a;(s)} are given by the flow generated by
Aiﬁi;t(a) 6/6a;n

a = Af(a), 4.5)
the dot denoting differentiation with respect to s; i.e.,
ai(s)=A,7 (), (4.6)
with initial conditions «,(0)=0.
Proof. Differentiating both sides of {4.4) with respect to s,

N
Xe'¥ =Y (1‘[ e"“’*')a (5) ﬁe"”"*’( 1l e"“’”') (4.7)

Jj=1 Ni=1 i=j+1

where the indicated products are ordered according to increasing i. For the
left-hand side,

XesX = Auéue.‘.x = A;ziu g(a(s))

(4.8)
= 4,2 glals)).
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And for the left representation, the result follows by the definition of n}k(a).
‘For the right representation, bring down X on the right side, e*¥X,
in (47). 1

For two-step nilpotent groups, it is rather easy to derive the splitting
rules using Campbell-Baker-Hausdorff formulas. Qur general approach
illustrates as well aspects of the dual representations. Another point of
interest is that, as will be seen in the next section, the splitting formula is
important for the connections with probability theory as it enables one to
calculate the distribution of X when it can be interpreted as a random
variable.

4.2. THEOREM (The Splitting Rule).

m
ea,‘Xu = H ea,X, A e(l/’Z)LJP”a‘,u,ﬁ‘(ﬁ.U)’ (49)
1

where 0(p, 6) equals 1 if p <o, and zero otherwise.
Proof. Let Y=a,X,. By Lemma 4.1,
esY — edn(:) Xy, ezmm Xmeﬂxlnzn o eﬂnts):n

where

0y = ay
By =a,a, T, u)
via Proposition 3.1, for the left representation, say. Thus,
a (s) = ags, Bil(s)=(s%/2) a,a,J{6(4, p).
Evaluating at s=1 gives the result. ||

For the groups laws, write
g(a) — e"“x“, g(a, .3) = e®I% ... gtNCNehI Ty ,,,elin:n’ (4.10)

and similarly for g(A4), g(A, B). Then the dual representation is used to
calculate the group law g(«, ) g(4, B). Since the {z,} generate a_central
Abelian subgroup, we just give the result for g(a, 0) g(4,0). And for
g(a) g(A) apply the splitting formula in conjunction with the result for

g(x, B) g(4, B).

4.3. ProposSITION (Group Laws). 1. In terms of coordinates of the first
kind,

e ng M = plout A XygUU/2)z Pt (411)
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2. In terms of coordinates of the second kind

n e % n oM Xk — I_I et AKX, e Apz  S70(p.0) (4.12)
i k '

7

Proof. For part 2, using the right dual representation,
g(@, B) g(4, 0)= el ... Mg a, ). (4.13)

And the result follows from Proposition 3.1, after dropping the terms
ehr71.. . efrin For the product g(a) g(A), use the splitting rule as indicated
in the above remarks. §

5. RANDOM VARIABLES AND STOCHASTIC PROCESSES

The notion of a random variable is nowadays—the theory of “quantum
probability”-—commonly extended to self-adjoint operators, with the usual
examples thought of as multiplication operators. That is, one takes the
point of view common in quantum theory where the observable quantities
are self-adjoint operators and functions are thought of as multiplication
operators; see, e.g., [ 1, 4. For type-H algebras one needs an inner product
with respect to which adjoints can be defined. This can be readily done
given a representation similar to the usual Schrodinger representation
(alternatively, the boson Fock space) for the Heisenberg algebra, cf. the
Bargmann representation [ 12, also see 14]. Namely, take a cyclic vector £2
such that z;Q = ¢;Q for some given scalars ¢;. Then the Lie bracket on A"
determines a skew-symmetric form B on 4" x A" via B(X, Y)=[X, Y],
X, Ye 4. Observe that B is non-degenerate. With B(X), X;)=c,J", for
any vector &, by Egs. (2.5) and (2.1):

Ce;id, e, J, 80 =c,0,{J, 8 T,
= lel? 1€]*.

By Darboux’ lemma, make an orthogonal change of variables such that
B takes the form of a direct sum of 2x2 matrices of the form (_Oﬂ 8.
Arrange this so that the u’s are all positive. Associated to each block, define
pairs of elements X, Y, such that B(Y, X)= u. This yields a decomposition
into “baby Heisenberg” algebras. The representation space consists of all
polynomials in the (commuting) variables X, acting on . Defining
Y;2=0, Vj, the inner product is defined so that multiplication by X; is
adjoint to the action of Y, for all i. (For a Hilbert space, one can now take
the closure.) Define the “vacuum expectation values” {Q >, = {00, ) for
operators Q on this Fock-type space.

(5.1)
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5.1. PROPOSITION. The elements X,+ Y, form a family of independent
Gaussian random variables.

Proof. The elements Z=a,(X,+ Y,) can be considered as random
variables. We compute the characteristic function, i.e., the Fourier trans-
form of the corresponding (spectral) measure,

= . 1712
<e.v_- >f) — 6(1/2)»" ”pl‘p’ (52)

using the splitting rule (Proposition 4.2} and the fact that all X and Y
variables drop out—the Y’s give zero on 2 and the X’s may be moved
across to become Y’s. Since this is quadratic in s, the corresponding
random variable = is Gaussian. In other words, the elements X;+ Y, are
independent (jointly) Gaussian random variables. J

In general, without changing the basis, one gets for the characteristic
function of a, X, from the splitting rule,

/D) S, Sla,a,00p.0) (5.3)

and to get a legitimate random variable one needs the quantity in the
exponent to be positive. This positivity condition is the requirement for the
interpretation of the X, as a Gaussian family, without the need for a
change-of-basis.

Next, consider the form a stochastic process takes when mapped via
the exponential map to type-H groups. See [14, 10,11] for a detailed
discussion. We consider the process as built up successively in steps: let a_}” k
denote the increment of the jth component, corresponding to X at the Nth
(time-)step and let 4"~ " denote the kth component of the process up to
(including) step N — 1. Then, by the group law (Prop. 4.3),

[ o6 [ 45 o [ el o e e (54
7 k k

5.2. THEOREM. For a continuous time process with components w(t) on

R the canonical components (i.e., in terms of coordinates of the first kind)
of the corresponding process on the group are given by

r !
(w,, s W, gL TP, dwj, .} L T2, dw3> (5.5)

Proof. 1In the limit, (5.4) yields

H ewk(l) Xk | 858 w,,ls)dw,,(:):-ﬂ’”ﬂ(p.a)' (56)
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Using the splitting rule
l_[ ekak = ew,‘X,,e —(1/2)z - P we 8(p,a) (57)

with dlw, w,)=w,dw,+w, dw,,

e»--ﬂx,‘e(),fz):-Ji'“()(,n,a)ﬂ)lw,, dwy — wo dwy) _ oWu Xy (172) §§ = - PHwy dwy. l (5.8)
In particular, for standard Brownian motion w(¢) on R™, here using { )

to denote the expected value, for g given by (3.2), with f, =0, 1 <k <n.

5.3. THEOREM. For Brownian motion we have the relation
e = ( QWi o W,,) €07 oz SOR) (59)

where H=13 X f is the standard Laplacian on the group.

Proof. We just indicate the formal idea. Namely, look at an increment,
of. Eq. (3.2), g™, .., a™), in (54). Since this is in factored form,
dropping the (N)’s for convenience,

; 2 ; 2
(8% vy Ay ) = 12T UM X, (5.10)

for a; independent Gaussian variables with mean zero and variance 1/N.
Taking products and using the Trotter product formula yields the result in
the limit. |

See [10, 11] for more details.

Remark. Theorem 5.3 gives the explicit form of the heat flow. Formula
{5.9) can also be deduced from the study done by Gaveau of the free step
2 nilpotent Lie groups and corresponds to the definition of the solution of
the stochastic Stratonovich equation driven by vector fields such as those
given in Proposition 3.1.

Next, we see the form of Hamilton’s equations for these groups.

6. HAMILTON’S EQUATIONS

We would like to find the equations for a flow of the form e™™ée ¥,
where H is a function on the algebra .47, e.g, a polynomial in the X
variables (or a formal power series) or a combination of exponentials e¢“*.
That is, reduce to consideration of a Hamiltonian of the form
H(X,,..,X,,)=H,(X,)---H,(X,). Then, as in the calculation of the dual
representations,
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[H, X;]=(—ad X,)(H)
=—Y H{(X,)---[X, HX)] - HX,)

0H
=% X, X1 5 (6.1)

Compare the calculation (recall Eq. (3.8))

0 Xige— X = [ X = i
rX; 2 " =X'g= X'., X . 6.2
-——at Oe ge [ i g] i8 [ #] axu ( )

Thus,

6.1. THEOREM. Hamilton’s equations are given by

X.':Z[Xj,X,-]—— or X,-=Z-J'“
j w it (6.3)
4=0 4,=0.

i

These can be written compactly in the form

X=:-JVH
(6.4)

e

7=

The skew-symmetric form z-J gives a Poisson structure-—and thus one
has “classical” as well as “quantum” mechanics associated to these groups.

In the next section, explicit representations of groups of type-H on
spaces of polynomials are given.

7. MATRIX ELEMENTS AND REPRESENTATIONS

We use the technique of dual representations (Section 3 above) to
compute matrix elements for the action by left multiplication of the group
elements (3.2) on the corresponding universal enveloping algebra. First the
“general case” is considered, with the action on the full algebra. Then we
present the representations where the elements of the center 2 act as
scalars, including the irreducible representations. See also [14]. For a full
discussion of the technique in general, see [9].

Remarks. We employ multi-index notation. Here I, n, e.g., denote multi-
indices: I=(/,,.. 1), eg, =11, =L+ -+, a'=al-- a4
The index j will always denote a single index. Greek indices correspond
appropriately to their Latin counterparts. Typically 4, u will be single,

580:115:1-11
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while p will be used for a running multi-index. For d-dimensional
multi-indices, e; will denote the standard basis elements in N¢ Recall,
Egs. (23), n=dim 2.

7.1. General Rrpresentation

The basis for the enveloping algebra is taken in the form s, = X"z’ The
action of the group element g (3.2) gives matrix elements according to

gwnIZZ””$L¢n+Nl+L, (7]1)

where the capitals indicate the effective shift in the corresponding indices.
Following the discussion in [9, pp. 174-176], use the right dual action to
move a ¥ term across and thus write the matrix elements in the form

d"+Nﬂl+L

s L e
w M IN I+ L)

(7.1.2)

7.1.1. THEOREM. The matrix elements for the general representation of
the group acting on the enveloping algebra are given by

N L —_ —1
ﬂ n')p ( k)lak( ( J”+A>ak/
AN = - o[ LA , (7.1.3

nl N’ I ' Z l_I (l N ) ak/ ij ﬁk ( )

where the implied sum over A is for >0, and o,, 6, each have components
O'kl.

Proof. As in (3.5), here 1>0,
X} =0/0a,+a,,,J0"*0/0p,. (71.1.4)

p=lo

Thus, the expansions

(X*) = (Zf) (000, #1 (. , 7+ 8/0B, ). (7.1.5)

j
This gives, since z* = d/dp,,
1" + Nﬁl‘

NL _ ;i =y i+ 2 S
MY —H(pj,-) (0/0)™ 7 (23T 0108

ny - py pi
N n ( > a/aa ) (011'7 e anj)

n+NﬁL

(n+N})!'L!

(Y, P o (Y
T jsvees Ty (N+p 'L' (L—O’) Bk | o

x (o, I ) (3/0B, )Y
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where the components of the index o are o,=3,0,. Note that
p;=2k ij' l

As mentioned in [57], where the Heisenberg group is discussed, these are
generalized Appell functions.

7.2. Irreducible Representations

For irreducible representations (cf. [14], also see [9]), the action of the
z variables on a cyclic vector is given by z;,Q2 = h;Q, for some scalars A;.
The basis reduces to X"2. We have the action of g

gX"Q2 = ¢ he* XX"Q. (7.2.1)

7.2.1. THEOREM. The matrix elements for irreducible representations of
groups of type-H have the form

a —n;
AN =2 oBh F i
SR | RL S

where (aJh),=o, , J7**h,.

Proof. The matrix elements are

—a,(oth),), (7.2.2)

n+ N

./”N =l','[ (5/6{1.-}-a‘/‘_ﬁi.]:‘.]}I1 a/aﬁu)m eﬁ-hm

n+ N

=P +4 piZ____pfh
_H< )a/aa) (a,:J 7" 7h,) (H+N)!e

%, (ah),)”
P‘ (N,+1),,, ’

__eﬂ hn

where (w/h),=a;, ,J7**h,. This gives result. [

(7.2.3)

A detailed discussion of the role of Laguerre polynomials (one-variable
Fy’s) in analysis on the Heisenberg group is given in [2].

8. NATURAL REALIZATIONS AND POLYNOMIAL REPRESENTATIONS

Dualize (3.5), by the algebraic version of Fourier transformation,

0/0a; — x; 1)
;= =D,

and define the matrix K by
K'=z, J90, j), (8.2)
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i.e., K consists of the upper triangular part of z-J. Then
X;=x,— KD, (8.3)

or X =x — KD. One immediately checks the commutation relations (2.8).
Note, Eq. (3.1), that (8.3) can be written in the form

Xi = e—Kf“D,‘D,xjeKJ“D“DJ. (84)

In the realization (8.3), since the D’s act only on higher-numbered
variables, the following proposition is immediate. Here £ is given by the
constant function 1.

8.1. PROPOSITION. Consider the basis {,= X" --- X{'Q2. In the realization
(8.3), {, reduces to

{p=xEm- Xt (8.5)

For example, given a function L analytic at 0, one can define the
associated Appell polynomials (see [6-8]) by

$,=e"L,, {8.6)
with L=L(D,, .., D,,), L2 =0. Define
€ =e'Xe 't (8.7)
Then ¢,=%"2. And ¥=C— KD, where the “creation operator” C is
defined by
C=e"xe 'L, (8.8)

As for Proposition 8.1, it follows that

8.2. PROPOSITION. The Appell polynomials satisfy
$p=6"2=C"Q. (8.9)

That is, because of the particular ordering of the variables you get
nothing new, which is not uninteresting in itself. Namely, these represen-
tations of the Heisenberg algebra are the same in the type-H case as well.

It is of interest to calculate the realization of the basis elements, used
already in Section 7 for the irreducible representations, namely

Yo=X". Xm0 {8.10)
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For example, for m=2, with X, =x, +aD,, X, =x,,

—HR;, —Ny

x ) (8.11)

X X3

() +aDy)" x5 = x\'x3%,F, (

8.3. LEMMA. Multiplication by X, on the basis y, is given by
Xo=ase, +1, KN, _,. (8.12)
Proof. For k< j, [X;, X;]=rX} 'K¥. The result follows as for the left
action in Proposition 3.1, Eq. (3.4). |

In terms of (x,, .., x,,), using the realization (8.3), set
Pal(X 15 s X)) =Y. (8.13)

8.4. THEOREM. ¢, given by (8.13) satisfy the recursion

xj¢n=¢n+e,+KjuDu¢n+Kmnu¢n+eu' (814)
Proof. From (8.12) and (8.3),

#o e Xj¢n - nuKuj‘ﬁn +ey
=(xj~K”‘Du)¢n—nyK“j¢n+eﬂ’ (815)

which yields the result. [
Write

ba=(x,+K"D )" (X, + K™D, )1 X (8.16)

Expand using multinomial coefficients and get a multivariate generalized
hypergeometric function. Since in the present context the general expres-
sion appears to be of purely formal interest, we omit writing it out.
However, as in Section 3, cf. also [9], the detailed structure of these
polynomials is certainly of interest, particularly from the viewpoint of
representations of nilpotent groups in general.

Another natural realization is the use of the full matrices z - J; see, e.g.,
[14, 17]. This is used in the following section. Namely, let

X;=x,+ A*D,, (8.17)

where the matrix 4 is given by 4Y= —1z.J% and thus is antisymmetric.
The commutation relations (2.8) are readily checked.
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9. HEAT POLYNOMIALS

We will discuss computation of the action of e’/ with H=13 X7, using
the results of Section 6, acting on polynomial bases. First, deduce via
Theorem 6.1 the flow

sin ¢ |z|

X(t)=e""Xe "= (cost|z|)X + m

z-JX, (9.1)

which we write in the form X(1)=xX + 0z -JX.

9.1. ProPOSITION. &, =kX,, &,=0z-J*X, generate a Heisenberg
algebra. In fact,

[6,, ¢ ]=0xr |z|2‘ (9.2)
Proof. Recalling that, Proposition 2.1, z-J%z . J* = |z|?, calculate

[oz-J%X

o KX ] =0k z)? (9.3)
as required. |

Thus, X;(¢) is of the form &+ 6,;, with §,, &,, generating a Heisenberg
algebra. Now recall the Appell-Hermite polynomials, &,(x, ), with
generating function

X o'h,(x, $)

eat.\' + a2 — Z n' (94)
a=10 *
{Hermite polynomials have —s replacing s).
9.2. LeMMA. With k=cost|z| and o =|z| ~'sint |z|,
X, (y=1% (Z) k" KX Fhoz-J*X,, ok |zi?). 9.5)
k=0
Proof. By the splitting rule in the Heisenberg case,
e:xX,l()=emf‘em)‘,e(12;’2)nx|z|-’l (96)
Thus,
to(n
X(y=75% (k) EM K (8,, oK |2]?), (9.7)
k=0

and the result follows. |
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Using the realization (8.3), e.g., we can calculate generalized Appell
polynomials, cf. (8.6), { (t)=e""Xlr ... X]'e Q.
9.3. THEOREM. The generalized Appell polynomials can be computed by
Xu(2)Pm - X (D) Q, (9.8)
with X,(t) given in Lemma9.2.

With Q such that HQ =0 in any particular realization, we have directly

tHy
e Sp-

One can also use the basis y,= X7 --- X7762. This leads to a somewhat
different approach. Recall the matrix elements, Theorem 7.2.1, for the

action of g: gy, =Y ANy, . n-
9.4. THEOREM. The heat flow is given by
e =Y (MY (W) I TSy (9:9)

where the MY, given by Theorem 1.2.1, are polynomials in w.
Proof. From Theorem 5.3, using K from (8.2),
e = (g(wy, .., w,y,) oo de K7 (9.10)
Applying this to ¥,
ety = (g(Wy, ey W) el o K7 (9.11)
and the result follows. |

Thus one is interested in the joint distribution, equivalently the
characteristic function or moment-generating function,

<£’11w1+ +1,,,wme_[(']wpdw., K"“>‘ (912)

Notice that here K is only upper triangular, in contrast to the case

considered in [17], where the full anti-symmetric matrix appears. Here we

follow the lines of [10], ie., using the algebraic structure directly to

calculate e’. As in [17], use the realization with the full matrix z-J

mentioned at the end of Section 8, Eq. (8.17). l.e,, X=x+ AD, with 4=

~1z-J. (Of course a probabilistic approach to (9.9) is of interest as well.)
We have H=4Y X f, with X = x + AD. Introduce the variables

3;=A"D,
(9.13)

RNj— 1)

R,
L

[ )

d;.

Thus, [d,, x;] = A",
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9.5. LemMa.  We have the commutation relations
[Li, R]=(x;0,+34") 49
[L;, x,8,]=A4%, (9.14)
[x;0,, Re]=A"x,;x,. 1
Note that X;=x;+§,, with [J;, x;]=0. Thus H takes the form
H=3Y (x14+6)+x,6,=Y (R,+L)+x,6,. (9.15)

Now put
A=) L,=53(4"D,)

P=YR=1Yx? (9.16)
E= [A9 P] = (x).‘s;t + %A#A) A‘M’

thus defining E, cf. (9.14). An s/(2) algebra is a Lie algebra with three
generators, A, B, C, say, satisfying the relations

[C,A]1=3B
(B, A]=iA (9.17)
[C, B]=iC

for some constant 1. A standard sl(2) algebra is the Lie algebra with three
generators, conventionally denoted by 4, p, R, satisfying the relations

[4,R]=p
[p, R1=2R (9.18)
[4, p]=24.

9.6. LEMMA. The variables A, E, and P generate an sl(2) algebra, with
A= 5z}

Proof. Using (9.14), (9.16),
[4, E]=[Z L,,x,,&,A""]=A""5”5¢,A"”. (9.19)
Recalling that 4 = —3z-J, from Proposition 2.1,
AP A =4z JPz P = 2|? 6, (9.20)
This gives [4, E]=1%|z|* A. Similarly, [E, P1=1z|?P. |}
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For the standard s/(2) algebra, recall the (Gauss) decomposition
formula.

9.7. LEMMA.

SR+ up+14 _ sT dseChd)p tT
€ exp(d—uTR)(d—uT €Xp d-—_uTA , (9.21)

where d*>=u?—st and T=tanh d.
Proof. See e.g., [4, 12, and 15]. |}
Thus

9.8. THEOREM.
e =exp[t(A + P)) exp(tx,d,) {9.22)
with
exp[ (A + P)] =exp(rtP) o*E'*" exp(t14), (9.23)

where t© =tan(t |z|/2) and o = sec(t |z|/2).

Proof. From Lemma 9.6, in terms of the standard s/(2) algebra,

2
A='—§14, P=%R, E=’—f4'—p. (9.24)

In Lemma 9.7, put s—¢|z|/2, u—0, t—>1|z|/2, and d— it |z|/2. With 1
and o as stated above, the result stated in the second part of the
theorem follows. Since H=A4+ P+ x,0,, one needs only to check that
[4+P, x,6,]=0, which follows readily using the skew-symmetry of 4. |

This gives an explicitly calculable formula for the heat flow on polyno-
mial functions on groups of type-H. In conjunction with Theorem 9.4, it
gives as well formulas for the joint moments of w, .., w,, and the stochastic
integrals {ow, dw, K*°. It only remains to remark on the action of e
given by Theorem 9.8 on functions of x,, .., x,,. The actions of A4, P, and

E are clear from (9.16). For x,4,, note that

4 flxe*)=x,4*D, f(x)=x,08, f(x), (9.25)
@,

giving the required relation, namely

e wouf(x) = f(xe'). (9.26)



164 FEINSILVER, KOCIK, AND SCHOTT

10. CONCLUDING REMARKS

In this paper we have presented a new technique for factorization of

group elements. An original method of dual representations has been used
for finding polynomial representations of the corresponding groups. By our
method polynomial solutions of heat equations are explicitly computable.
The key point for calculating the heat flow is reduction to s/(2) in
conjunction with the Feynman-Kac formula.
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