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Abstract. We examine the Schrödinger algebra in the framework of
Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are
studied. Then the Berezin representation of the Schrödinger algebra is
computed. In fact, the sl(2) piece of the Schrödinger algebra can be
decoupled from the Heisenberg component. This is accomplished using a
special realization of the sl(2) component that is built from the Heisenberg
piece as the quadratic elements in the Heisenberg-Weyl enveloping algebra.
The structure of the Schrödinger algebra is revealed in a lucid way by the
form of the Berezin representation.
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1 Introduction

The Schrödinger algebra is a Lie algebra that has attracted since its introduc-
tion [12, 14] considerable interest in mathematical physics and its applications
(see, e.g., [1, 2, 3, 7, 8]).

In [9] we have investigated the semidirect product structure of the Schrödinger
algebra and showed how it leads to representations in a Fock space realized in
terms of canonical Appell systems. This includes a classification of the repre-
sentations and construction of the Hilbert space of functions on which certain
commuting elements act as self-adjoint operators. Some associated evolution
equations have been considered as well. The notion of generalized coherent
states is exploited extensively there.

Here we shall take a somewhat different point of view and study the Schrödinger
algebra using the method of “Berezin quantization,” which we understand from
the rather broad point of view as developed from the original work of Berezin by
Perelomov and others, see [4, 5, 6, 15]. Again, the generalized coherent states
play an essential rôle.

Here is a description of the contents of this paper. Section 2 presents the
Schrödinger algebra. Section 3 contains the basics of our formulation of Berezin’s
theory. The Berezin representation for each of the Heisenberg-Weyl and sl(2)
algebras is presented in §4. The Berezin quantization of the Schrödinger algebra
constitutes §5. Concluding remarks and some further lines for research are given
in §6.

2 Schrödinger algebra

The (n = 1, centrally-extended) Schrödinger algebra S is spanned by the fol-
lowing elements

M mass
K special conformal transformation
G Galilei boost
D dilation
Px spatial translation
Pt time translation
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(see, e.g., [8] for details) which satisfy the following commutation relations given
here in the form of a multiplication table



M K G D Px Pt

M 0 0 0 0 0 0
K 0 0 0 −2K −G −D
G 0 0 0 −G −M −Px

D 0 2K G 0 −Px −2Pt

Px 0 G M Px 0 0
Pt 0 D Px 2Pt 0 0


(thus, e.g., [D,K] = 2K). The Schrödinger algebra can be viewed as a semidi-
rect product

S ∼= H⊕s sl(2)

of two subalgebras: a Heisenberg-Weyl subalgebra H = span {M,G,Px}, and
sl(2) = span {K,D,Pt}.

This fundamental feature is considered in some detail in [9].

3 Cartan decomposition and Berezin theory

Our approach to Berezin quantization [4, 5, 6] is based on the exposition in
[15] that uses the notion of generalized coherent state as a group element acting
on an appropriate vacuum state, but, like in [13], goes beyond the “symmetric
space paradigm.” For more on the calculational tools used, the reader may
consult [10].

Consider a Lie algebra g that admits a splitting

g = L ⊕K ⊕ P (1)

where R and L are two abelian subalgebras of the same dimension n, such that
they generate the whole algebra: g = gen {L,P}.

Remark 3.1 An important case of such a structure is the Cartan decomposition
for symmetric Lie algebras with L and P satisfying [L,P] ⊆ K, [K,P] ⊆ P, and
[K,L] ⊆ L. This precise structure, however, does not exist for the Schrödinger
algebra, which does not correspond to a classical symmetric space. In fact there
are two possibilities for a generalized “Cartan decomposition.” One satisfies the
appropriate commutation properties, but does not obey dimP = dimL, see [9].
The other—a different variation on the standard Cartan decomposition—will
be used in the present context.

Let P, L and K have bases {Rj}, {Lj}, and {ρA}1≤A≤m, respectively. A typical
element X ∈ g is of the form

X = v′jRj + u′AρA + w′jLj (2)
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for some (2n+m)-tuple (v′, u′, w′). A group element can be obtained either by
direct exponentiation of X, or by composing exponentials corresponding to the
factorization into subgroups according to the decomposition of the Lie algebra.
Thus

eX = exp(vjRj)

(∏
A

exp(uȦρȦ)

)
exp(wjLj) (3)

We use the convention of summation over repeated indices, unless the indices
are dotted (the dot indicating no summation over A). Clearly, the coordinates
(v, u, w) versus (v′, u′, w′) are mutually dependent as they represent in (3) the
same group element.

Now, we construct a representation space H for the enveloping algebra of g as
a Fock space spanned by basis elements

|k1, k2, . . . , kn〉 = Rk1
1 · · ·Rkn

n Ω (4)

where Ω is a vacuum state. The action of the algebra elements on the vacuum
state is defined thus

(i) R̂jΩ = RjΩ
(ii) L̂jΩ = 0
(iii) ρ̂AΩ = τAΩ

where τA are constants. Next, we equip H with a symmetric scalar product in
some number field, such that the ladder operators are mutually adjoint:

R̂∗i = L̂i

The adjoint map for other elements is determined by the commutation rules.
We shall always consider the vacuum state normalized, 〈Ω|Ω〉 = 1.

In an important special case, one assumes that only one element of K, say
ρ0, acts on Ω as a nonzero constant τ . Hence the group element specified by
equation (3) acts on Ω as follows

eXΩ = eτ u exp(vjRj)Ω (5)

The system possesses two types of lowering and raising operators (ladder opera-
tors): algebraic and combinatorial. The algebraic lowering and raising operators
are defined simply by concatenation within the enveloping algebra of g followed
by acting on Ω, that is

R̂jψ = Rjψ

L̂jψ = Ljψ (6)

for any linear combination ψ of basis elements (4). The “hat” can be thus
omitted without causing confusion. The combinatorial raising operators, Rj ,
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and combinatorial lowering operators, Vj , are defined to act on the basis (by
definition) as follows

Rj |k1, k2, . . . , kn〉 = |k1, k2, . . . , kj + 1, . . . kn〉
Vj |k1, k2, . . . , kn〉 = kj |k1, k2, . . . , kj − 1, . . . kn〉

(“off-diagonal matrices”).

Next, the idea will be to express the algebraic ladder operators, L̂j , R̂j (and
hence the basis for g), in terms of the combinatorial ladder operators Rj and Vj .

It is clear that the algebraic raising operators are represented directly by the
R’s, namely R̂j = Rj . But the combinatorial lowering operators do not neces-
sarily correspond to elements of g. To find the representation we shall use the
coherent states.

Definition 3.2 The system of coherent states C is the image of the subgroup
generated by the (abelian) subalgebra R ⊂ g in the Hilbert space H constructed
above, namely C = expR · Ω with the typical element

|v〉 = exp(vjRj)Ω

The coherent states form a manifold C parametrized by the elements of R, or,
equivalently, by coordinates v = (v1, . . . , vn).

Observation 3.3 When restricted to coherent states, Rj acts as differentiation
∂/∂vj , while Vj acts as multiplication by vj :

Rj = ∂/∂vj (on C)
Vj = vj ·

We shall use this property to determine the action of any operator defined as a
(formal) operator function f(R,V), with all V’s to the right of any Rj , by (1)
moving all R’s to the right of all V’s in the formula f , yielding the operator
f̌(V,R), and then (2) replacing Vj → vj and Rj → ∂/∂vj . Note that this
is a formal Fourier transform combined with the Wick ordering. The Berezin
transform extends this by taking the inner product with a coherent state |w〉.

The following notion will be used frequently.

Definition 3.4 The Leibniz function is a map C × C → C defined as the inner
product of the coherent states:

Υwv = 〈w|v〉

for any v, w parametrizing C.
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The Leibniz function can be explicitly calculated for a particular Lie algebra
as a scalar function symmetric with respect to v and w. The calculations are
based on the adjoint structure: we start with

〈w|v〉 = 〈exp(wjRj)Ω | exp(vjRj)Ω〉 = 〈Ω | exp(wjLj) exp(vjRj)Ω〉

and then use a formula for commuting a typical group element generated by L’s
past a typical group element generated by R’s, that is, generally

eL eR = erekel (7)

where R ∈ R and L ∈ L are general elements, while r ∈ R and l ∈ L and
k ∈ K are functions of the coordinates of R and L and need to be computed in
each particular case from the commutation relations. (See §4 below for explicit
examples.) The relation (7) is called in the following the Leibniz formula.

Definition 3.5 The coherent state representation (Berezin transform) is de-
fined for an operator Q as

〈Q〉wv =
〈w|Q|v〉
〈w|v〉

.

The Berezin transforms of the algebraic ladder operators can be expressed in
terms of derivatives of the Leibniz function, namely

〈R̂j〉wv = Υ−1 ∂

∂vj
Υ =

∂(log Υ)
∂vj

〈L̂j〉wv = Υ−1 ∂

∂wj
Υ =

∂(log Υ)
∂wj

(using the fact that Lj is adjoint to Rj). The right-hand sides are functions
of v and w. Hence, by “eliminating w’s,” one may find a system of first-order
partial differential equations satisfied by Υ, say

∂Υ
∂wj

= f̌j(v,
∂

∂v
) Υ

for some operator functions f̌j . We shall call this a system of defining partial
differential equations. As indicated in the discussion above, it gives the answer
to our question of the representation of L̂j , namely

L̂j = fj(R,V)

Remark 3.6 Note that the converse holds as well: if we have L̂j expressed via
R and V, then Υ satisfies the corresponding partial differential equation. In
some cases, this can be used to find Υ.

Also, note that in the case of symmetric spaces, log Υ is the Kähler potential.

7



One goal is to identify in our representation a set of n mutually commuting self-
adjoint operators Xj — observables — which provide physical or probabilistic
interpretations for certain elements of the Lie algebra. For instance, they gener-
ate a unitary group, exp(i

∑
j sjXj), for s = (s1, . . . , sn) ∈ Rn where i =

√
−1.

The scalar function defined by

φ(s) = 〈Ω| exp(i
∑

j

sjXj)|Ω〉 (8)

is positive-definite, so, by Bochner’s Theorem, φ(s) is the Fourier transform of a
positive measure, which is, in fact, the joint spectral density of the observables
(X1, . . . , Xn).

4 Berezin quantization in action

Now we shall see how these general ideas are executed in the case of the
Heisenberg-Weyl and sl(2) algebras. How these results appear combined in
the case of the Schrödinger algebra will be shown in the following Section.

4.1 The Heisenberg-Weyl algebra

First we define a standard form of the Heisenberg-Weyl algebra.

Definition 4.1 The standard basis for a Heisenberg-Weyl (HW) algebra H ∼=
span {P,X,H} satisfies

[P,X] = H, [P,H] = [X,H] = 0

Given a scalar m > 0, an m-HW algebra denotes a representation where H acts
as the scalar m times the identity operator.

The Leibniz formula for the m-HW algebra is

ewP evX = evXem wvewP

(known in the literature as the Weyl formula and essential in quantum mechan-
ics). The Hilbert space (Fock space), has basis |n〉 = XnΩ with rules PΩ = 0,
HΩ = mΩ. ¿From the equation above and the relation P = X∗, the Leibniz
function can be easily calculated:

Υwv = 〈ewXΩ|evXΩ〉 = exp(mwv)

where we assume a normalized vacuum state. Then, the following defining
partial differential equation

∂Υ
∂w

= mvΥ
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suggests how the algebra basis can be expressed in terms of the combinatorial
ladder operators R, V, namely

X̂ = R, Ĥ = m, P̂ = mV

Remark 4.2 Note that in this case, we could actually find the action of P
directly using the adjoint action of the group:

P |v〉 = PevXΩ = evXe−vXPevXΩ
= evXe−vad XPΩ = evX(P +mv)Ω
= mvevXΩ = mV |v〉

For the Berezin transforms, first we have 〈X〉wv = Υ−1∂Υ/∂v = mw so, from
P = X∗, exchanging w ↔ v, we immediately have 〈P 〉wv = mv. Summarizing,

Proposition 4.3 For the m-HW algebra, the Berezin representation is

〈X〉wv = mw, 〈H〉wv = m, 〈P 〉wv = mv

Note that the Berezin representation of the operator X1 = X + P is 〈X1〉wv =
m(w + v), which, being symmetric in w and v, is formally self-adjoint.

Recall the exponential formula

exp(aPx + bG) = ebG exp(mab/2)eaPx (9)

which can be readily verified by differentiation and the adjoint action. Then we
have the function φ(s), as in equation (8),

φ(s) = 〈Ω| exp(isX1)|Ω〉 = e−s2m/2

which is the well-known Fourier transform of a normal distribution with density
function exp(−x2/(2m))/

√
2πm. Thus, we interpret X1 as a Gaussian random

variable with variance m.

4.2 The sl(2) algebra

Now we proceed similarly with the algebra sl(2).

Definition 4.4 The standard basis of the sl(2) algebra A ∼= span {L,R, ρ}
satisfies

[L,R] = ρ, [ρ,R] = 2R, [L, ρ] = 2L

In this basis, the sl(2) Leibniz formula is

ewLevR = exp(
v

1− wv
R)(1− wv)−ρ exp(

w

1− wv
L) (10)

This can be computed using differential equations, as in [10], or using 2 × 2
matrices, cf. [11].
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Our Hilbert space has basis |n〉 = RnΩ with the rules LΩ = 0, and ρΩ = cΩ for
a constant c. With L = R∗, the Leibniz function follows easily from the Leibniz
formula:

Υwv = 〈ewRΩ|evRΩ〉 = (1− wv)−c

The Leibniz function satisfies the partial differential equation

∂Υ
∂w

= cvΥ + v2 ∂Υ
∂v

from which one can read the following representation of the algebra in terms of
the combinatorial operators R, V:

R̂ = R, L̂ = cV +RV2

(As in the HW case, we alternatively can find the action of L via the adjoint
action of the group.)
To find ρ̂, we calculate [L,R] to get:

ρ̂ = [L̂, R̂] = [cV +RV2,R] = c+ 2RV

For the Berezin transforms, we have

Proposition 4.5 The Berezin representation of the sl(2) algebra is

〈R〉wv =
cw

1− wv
, 〈ρ〉wv = c

1 + wv

1− wv
, 〈L〉wv =

cv

1− wv

Proof: The transform for R comes directly by taking the logarithmic deriva-
tive of Υ with respect to v. Then the result for L follows as it is adjoint to R.
For ρ, convert ρ̂ = c+ 2RV to c+ 2v∂ log Υ/∂v to find the stated result.

Now consider X2 = R+ ρ+ L. We have

〈X2〉wv = c
(1 + w)(1 + v)

1− wv

which is symmetric in w and v, showing that X2 defines a formally self-adjoint
operator.

5 Berezin quantization of the Schrödinger alge-
bra

We now will see how the results of the previous section relate to the Schrödinger
algebra S.

First we find the Leibniz formula and the Leibniz function for S, and then
the Berezin representations of its basis elements. Next we will identify two
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(essentially) self-adjoint operators acting in the Hilbert space for S. Further
investigation of the Berezin representation will lead to a structure theorem for
the Schrödinger algebra.

We consider the following decomposition of the Schrödinger algebra (braces
represent spanning)

S = {Px, Pt }︸ ︷︷ ︸
L

⊕{M,ρ }︸ ︷︷ ︸
K

⊕{K,G }︸ ︷︷ ︸
P

Thus, in terms of the notation of Section 3, we associate R1 = K, R2 = G,
L1 = Pt and L2 = Px.

The Hilbert space H is a Fock space defined as

H = span { |n1, n2〉 ≡ Kn1Gn2Ω }

the bar indicating closure of the linear span, and the algebra elements act on
the vacuum state Ω as follows

PxΩ = PtΩ = 0, DΩ = cΩ, MΩ = m · Ω

so that on any element of H, M acts as multiplication by the scalar m. We as-
sume that H is equipped with an inner product such that K∗ = Pt and G∗ = Px.
The consistency of this — existence of such an inner product — follows from
the symmetry of the Leibniz function calculated below.

This construction makes the following two operators essentially self-adjoint:

X1 = Pt +D +K
X2 = G+ Px

The system of coherent states C is defined as a two-parameter manifold in H
with typical element

|v〉 = |v1, v2〉 = ev1Kev2GΩ

Lemma 5.1 The Leibniz formula for the Schrödinger algebra, reduced by acting
on the vacuum state, is

ew1Pt+w2Pxev1K+v2GΩ
= (1− w1v1)−c exp(

m

2
q̃(w, v)) exp(ṽ1K + (ṽ2 + w2ṽ1)G)

where

ṽi = vi/(1− w1v1), i = 1, 2

q̃(w, v) =
m

2
w1v

2
2 + 2w2v2 + w2

2v1
1− w1v1
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Proof: We take several steps to pull the P -factors across all terms.

1. Apply the Leibniz formula for sl(2):

ew1Ptev1K = eṽ1K(1− w1v1)−Dew̃1Pt

with w̃1 = w1/(1− w1v1).

2. Recall the HW formula, equation (9)

exp(aPx + bG) = ebG exp(mab/2)eaPx

Now the adjoint action gives

ew̃1PtGe−w̃1Pt = G+ w̃1Px

and hence from the above HW formula,

ew̃1Ptev2GΩ = exp(
m

2
w̃1v

2
2)ev2GΩ

3. Next, since D acts a dilation on G,

(1− w1v1)−Dev2GΩ = (1− w1v1)−ceṽ2GΩ

4. Now for the Px-factor, the adjoint action gives

ew2PxKe−w2Px = K + w2G+mw2
2/2

and exponentiating,

ew2Pxeṽ1K = eṽ1Keṽ1w2G exp(mṽ1w2
2/2)ew2Px

5. And the HW Leibniz formula is the last step:

ew2Pxeṽ2G = eṽ2G exp(mw2ṽ2)ew2Px

Combining the factors involving m, K, and G yields the result stated.

This formula now yields the Leibniz function.

Proposition 5.2 The Leibniz function for the Schrödinger algebra is:

Υwv = (1− w1v1)−c exp
(m

2
w1v

2
2 + 2w2v2 + w2

2v1
1− w1v1

)
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Proof: Apply the Leibniz formula in

Υwv = 〈w|v〉 = 〈Ω|ew2Pxew1Pt ev1Kev2GΩ〉

and use the fact that appropriate elements of L and P are mutually adjoint,
specifically, K∗ = Pt and G∗ = Px.

Clearly, Υ is symmetric in w and v which shows the symmetry property of the
inner product.

Now for the Berezin transforms of the Lie algebra elements, including the self-
adjoint X-operators. The above proposition implies the following system of
partial differential equations:

∂Υ
∂w1

= v2
1

∂Υ
∂v1

+ v1v2
∂Υ
∂v2

+ cv1Υ +
m

2
v2
2Υ

∂Υ
∂w2

= v1
∂Υ
∂v2

+mv2Υ

from which we can infer the hat-representation of our Lie algebra

P̂t = cV1 + m
2 V

2
2 + (R1V1 +R2V2)V1

K̂ = R1

D̂ = c+ 2R1V1 +R2V2

P̂x = mV2 +R2V1

Ĝ = R2

M̂ = m

To get D̂, we used the commutation rule D = [Pt,K]. As a result of these
calculations, the following Berezin representation emerges

〈Pt〉wv = c
v1

1− w1v1
+
m

2

(w2v1 + v2
1− w1v1

)2

〈Px〉wv = m
w2v1 + v2
1− w1v1

〈K〉wv = c
w1

1− w1v1
+
m

2

(w2 + w1v2
1− w1v1

)2

〈G〉wv = m
w2 + w1v2
1− w1v1

〈D〉wv = c
1 + w1v1
1− w1v1

+m
(w2v1 + v2)(w2 + w1v2)

(1− w1v1)2

〈X1〉wv = c
(1 + w1)(1 + v1)

1− w1v1
+m

(w2 + v2 + w1v2 + w2v1
1− w1v1

)2

〈X2〉wv = m
v2 + w2 + w1v2 + w2v1

1− w1v1
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where the transforms for Xi are found by adding the appropriate results. In this
form it is clear that indeed K∗ = Pt, G∗ = Px, D∗ = D and X∗

i = Xi, which
verifies the validity of the Hilbert space constructed. The case m = 0 recovers
the sl(2) case, cf. §4.2. However, the c = 0 case is interesting, as it is unlike
either of the Heisenberg-Weyl or the sl(2) cases. The Berezin representation of
X2 shows that it is not simply an independent Gaussian, which would look just
like m times the sum w2 + v2, cf. the operator X1 in §4.1.

The above formulas suggest that one should perform the following subtractions:

Pt − P 2
x/(2m), K −G2/(2m), D −GPx/m− 1

2

the 1
2 arises naturally as will be seen shortly. We start with

Proposition 5.3 In the hat-representation, define R0 = R1−R2
2/(2m). Then

P̂t − P̂ 2
x/(2m) = (c− 1

2 )V1 +R0V2
1

K̂ − Ĝ2/(2m) = R0

D̂ − ĜP̂x/m− 1
2 = (c− 1

2 ) + 2R0V1

Proof: These follow readily from the commutation relations for the R and V
operators.

Now, we find

Theorem 5.4 For the Schrödinger algebra, we have

〈Pt −
1

2m
P 2

x 〉wv = (c− 1
2 )

v1
1− w1v1

〈K − 1
2m

G2〉wv = (c− 1
2 )

w1

1− w1v1

〈D − 1
m
GPx − 1

2 〉wv = (c− 1
2 )

1 + w1v1
1− w1v1

Consequently, L0 = Pt−
1

2m
P 2

x , R0 = K− 1
2m

G2, ρ0 = D− 1
m
GPx− 1

2 form

a standard basis of an sl(2) algebra.

Proof: Use the hat-representation from Proposition 5.3 in the dual form acting
on the Leibniz function. Setting L0, R0, and ρ0 as in the statement of the
Theorem,

Ľ0 = (c− 1
2 ) v1 + v2

1

(
∂

∂v1
− 1

2m
∂2

∂v2
2

)
Ř0 =

(
∂

∂v1
− 1

2m
∂2

∂v2
2

)
ρ̌0 = (c− 1

2 ) + 2v1

(
∂

∂v1
− 1

2m
∂2

∂v2
2

)
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and compute accordingly.

As to the main structure of the Schrödinger algebra, we have

Theorem 5.5 The elements L0, R0, ρ0 defined in Theorem 5.4 commute with
the Heisenberg-Weyl subalgebra generated by Px, G,m.

Proof: Use the hat-representation found in Proposition 5.3. With P̂x =
mV2 +R2V1 and Ĝ = R2, it is readily checked that each of the sl(2) operators
commutes with Px and G.

6 Concluding remarks

• For the case n > 1, an interesting approach would be to study repre-
sentations induced from (the Lie algebra of) the Euclidean group. On
the other hand, the rotation subgroup splits off by subtracting operators
of the form GiPj − GjPi from the Jij rotation operators (cf. [9]). But
dealing with the representations induced from the rotation subgroup re-
quires some more detailed work (cf., “intrinsic” subalgebras in Hecht [13]).

• Thanks to the decoupling structure, extending our approach to the q-
Schrödinger algebra looks quite reasonable.

• Finding the finite-dimensional representations is another project to be
considered.
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