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Abstract

Krawtchouk matrices have as entries values of the Krawtchouk poly-
nomials for nonnegative integer arguments. We show how they arise as
condensed Sylvester-Hadamard matrices via a binary shuffling function.
The underlying symmetric tensor algebra is then presented.

To advertise the breadth and depth of the field of Krawtchouk poly-
nomials/matrices through connections with various parts of mathematics,
some topics that are being developed into a Krawtchouk Encyclopedia are
listed in the concluding section. Interested folks are encouraged to visit
the website

http://chanoir.math.siu.edu/Kravchuk/index.html

which is currently in a state of development.

1 What are Krawtchouk matrices

Of Sylvester-Hadamard matrices and Krawtchouk matrices, the latter are less
familiar, hence we start with them.

Definition 1.1 The N th-order Krawtchouk matrix K(N) is an (N +1)×(N +1)
matrix, the entries of which are determined by the expansion:

(1 + v)N−j (1− v)j =
N∑

i=0

viK
(N)
ij (1.1)

Thus, the polynomial G(v) = (1 + v)N−j (1− v)j is the generating function for
the row entries of the jth column of K(N). Expanding gives the explicit values
of the matrix entries:

K
(N)
ij =

∑
k

(−1)k

(
j

k

)(
N − j

i− k

)
.

where matrix indices run from 0 to N .
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Here are the Krawtchouk matrices of order zero, one, and two:

K(0) =
[

1
]

K(1) =
[

1 1
1 −1

]
K(2) =

 1 1 1
2 0 −2
1 −1 1


The reader is invited to see more examples in Table 1 of the Appendix.

The columns of Krawtchouk matrices may be considered generalized binomial
coefficients. The rows define Krawtchouk polynomials: for fixed order N , the
ith Krawtchouk polynomial takes its corresponding values from the ith row:

ki(j,N) = K
(N)
ij (1.2)

One can easily show that ki(j,N) can be given as a polynomial of degree i in
the variable j. For fixed N , one has a system of N + 1 polynomials orthogonal
with respect to the symmetric binomial distribution.

A fundamental fact is that the square of a Krawtchouk matrix is proportional
to the identity matrix.

(K(N))2 = 2N · I

This property allows one to define a Fourier-like Krawtchouk transform on inte-
ger vectors. For more properties we refer the reader to [12]. In the present
article, we focus on Krawtchouk matrices as they arise from corresponding
Sylvester-Hadamard matrices. More structure is revealed through considera-
tion of symmetric tensor algebra.

Symmetric Krawtchouk matrices. When each column of a Krawtchouk
matrix is multiplied by the corresponding binomial coefficient, the matrix be-
comes symmetric. In other words, define the symmetric Krawtchouk matrix
as

S(N) = K(N)B(N)

where B(N) denotes the (N + 1)× (N + 1) diagonal matrix with binomial coef-
ficients, B

(N)
ii =

(
N
i

)
, as its non-zero entries.

Example. For N = 3, we have

S(3) =


1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1




1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

 =


1 3 3 1
3 3 −3 −3
3 −3 −3 3
1 −3 3 −1



Some symmetric Krawtchouk matrices are displayed in Table 2 of the Ap-
pendix. A study of the spectral properties of the symmetric Krawtchouk ma-
trices was initiated in work with Fitzgerald [11].
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Background note. Krawtchouk’s polynomials were introduced by Mikhail
Krawtchouk in the late 20’s [17, 18]. The idea of setting them in a matrix form
appeared in the 1985 work of N. Bose [2] on digital filtering in the context of
the Cayley transform on the complex plane. For some further development of
this idea, see [12].

The Krawtchouk polynomials play an important rôle in many areas of math-
ematics. Here are some examples:

• Harmonic analysis. As orthogonal polynomials, they appear in the
classic work by Szëgo [24]. They have been studied from the point of view
of harmonic analysis and special functions, e.g., in work of Dunkl [8, 9].
Krawtchouk polynomials may be viewed as the discrete version of Hermite
polynomials (see, e.g., [1]).

• Statistics. Among the statistics literature we note particularly Eagleson
[10] and Vere-Jones [25].

• Combinatorics and coding theory. Krawtchouk polynomials are
essential in MacWilliams’ theorem on weight enumerators [19, 21], and
are a fundamental example in association schemes [5, 6, 7].

• Probability theory. In the context of the classical symmetric ran-
dom walk, it is recognized that Krawtchouk’s polynomials are elementary
symmetric functions in variables taking values ±1. It turns out that the
generating function (1.1) is a martingale in the parameter N [13].

• Quantum theory. Krawtchouk matrices interpreted as operators give
rise to two new interpretations in the context of both classical and quan-
tum random walks [12]. The significance of the latter interpretation lies
at the basis of quantum computing.

Let us proceed to show the relationship between Krawtchouk matrices and
Sylvester-Hadamard matrices.

2 Krawtchouk matrices from Hadamard matri-
ces

Taking the Kronecker (tensor) product of the initial matrix

H =
[

1 1
1 −1

]
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with itself N times defines the family of Sylvester-Hadamard matrices.

(For a review of Hadamard matrices, see Yarlagadda and Hershey [27].)

Notation 2.1 Denote the Sylvester-Hadamard matrices, tensor (Kronecker)
powers of the fundamental matrix H, by

H(N) = H⊗N = H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
N times

The first three Sylvester-Hadamard matrices are:

H(1) =
[
• •
• ◦

]
H(2) =


• • • •
• ◦ • ◦
• • ◦ ◦
• ◦ ◦ •

 H(3) =



• • • • • • • •
• ◦ • ◦ • ◦ • ◦
• • ◦ ◦ • • ◦ ◦
• ◦ ◦ • • ◦ ◦ •
• • • • ◦ ◦ ◦ ◦
• ◦ • ◦ ◦ • ◦ •
• • ◦ ◦ ◦ ◦ • •
• ◦ ◦ • ◦ • • ◦


where, to emphasize the patterns, we use • for 1 and ◦ for -1. See Table 3 of
the Appendix for these matrices up to order 5.

For N = 1, the Hadamard matrix coincides with the Krawtchouk matrix:
H(1) = K(1). Now we wish to see how the two classes of matrices are related for
higher N . It turns out that appropriately contracting (condensing) Hadamard-
Sylvester matrices yields corresponding symmetric Krawtchouk matrices.

The problem is that the tensor products disperse the columns and rows that
have to be summed up to do the contraction. We need to identify the right sets
of indices.

Definition 2.2 Define the binary shuffling function as the function

w : N → N

giving the “binary weight” of an integer. That is, let n =
∑

k dk2k be the binary
expansion of the number n. Then w(n) =

∑
k dk, the number of ones in the

representation.

Notice that, as sets,

w({0, 1, . . . , 2N − 1}) = {0, 1, . . . , N}

Here are the first 16 values of w listed for the integers running from 0 through
24 − 1 = 15:

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
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The shuffling function can be defined recursively. Set
w(0) = 0 and

w(2N + k) = w(k) + 1 (2.1)

for 0 ≤ k < 2N . One can thus create the sequence of values of the shuffling
function by starting with 0 and then appending to the current string of values
a copy of itself with values increased by 1:

0 → 01 → 0112 → 01121223 → . . .

Now we can state the result;

Theorem 2.3 Symmetric Krawtchouk matrices are reductions of Hadamard
matrices as follows:

S
(N)
ij =

∑
w(a)=i
w(b)=j

H
(N)
ab

Example. Let us see the transformation for H(4) → S(4) (recall that •
stands for 1, and ◦ for −1). Applying the binary shuffling function to H(4),
mark the rows and columns accordingly:



0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
0 • • • • • • • • • • • • • • • •
1 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦
1 • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦
2 • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ •
1 • • • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦
2 • ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ •
2 • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ • •
3 • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • • ◦
1 • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
2 • ◦ • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦ •
2 • • ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ • •
3 • ◦ ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
2 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
3 • ◦ • ◦ ◦ • ◦ • ◦ • ◦ • • ◦ • ◦
3 • • ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • ◦ ◦
4 • ◦ ◦ • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ •


The contraction is performed by summing columns with the same index, then
summing rows in similar fashion. One checks from the given matrix that indeed
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this procedure gives the symmetric Krawtchouk matrix S(4):

S(4) =



0 1 2 3 4
0 1 4 6 4 1
1 4 8 0 −8 −4
2 6 0 −12 0 6
3 4 −8 0 8 −4
4 1 −4 6 −4 1



Now we give a method for transforming the N th (symmetric) Krawtchouk
matrix into the N + 1st.

Definition 2.4 The square contraction r(M) of a 2n× 2n matrix Mab,
1 ≤ a, b ≤ 2n, is the (n + 1)× (n + 1) matrix with entries

(rM)ij =
∑

a=2i, 2i+1
b=2j, 2j+1

Mab

0 ≤ i, j ≤ n, where the values of Mab with a or b outside of the range (1, . . . , 2n)
are taken as zero.

Theorem 2.5 Symmetric Krawtchouk matrices satisfy:

S(N+1) = r(S(N) ⊗H)

with S(1) = H.

Example. Start with symmetric Krawtchouk matrix of order 2:

S(2) =

 1 2 1
2 0 −2
1 −2 1


Take the tensor product with H:

S(2) ⊗H =


1 1 2 2 1 1
1 −1 2 −2 1 −1
2 2 0 0 −2 −2
2 −2 0 0 −2 2
1 1 −2 −2 1 1
1 −1 −2 2 1 −1


surround with zeros and contract:

r(S(2)⊗H) = r



0 0 0 0 0 0 0 0
0 1 1 2 2 1 1 0
0 1 −1 2 −2 1 −1 0
0 2 2 0 0 −2 −2 0
0 2 −2 0 0 −2 2 0
0 1 1 −2 −2 1 1 0
0 1 −1 −2 2 1 −1 0
0 0 0 0 0 0 0 0


=


1 3 3 1
3 3 −3 −3
3 −3 −3 3
1 −3 3 −1


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Corollary 2.6 Krawtchouk matrices satisfy:

K(N+1) = r(K(N)B(N) ⊗H)(B(N+1))−1

where B is the diagonal binomial matrix.

Note that starting with the 2× 2 identity matrix, I, set I(1) = I,
I(N+1) = r(I(N) ⊗ I). Then, in fact, I(N) = B(N).

Next, we present the algebraic structure underlying these remarkable prop-
erties.

3 Krawtchouk matrices and symmetric tensors

Given a d-dimensional vector space V over R, one may construct a dN -dimensional
space V ⊗N , the N -fold tensor product of V , and, as well, a

(
d+N−1

N

)
-dimensional

symmetric tensor space V ⊗sN . There is a natural map

symm : V ⊗N −→ V ⊗SN

which, for homogeneous tensors, is defined via

symm (v ⊗ w ⊗ . . .) = symmetrization of (v ⊗ w ⊗ . . .)

For computational purposes, it is convenient to use the fact that the sym-
metric tensor space of order N of a d-dimensional vector space is isomorphic to
the space of polynomials in d variables homogeneous of degree N .

Let {e1, e2, . . . ed} be a basis of V . Map ei to xi, replace tensor products by
multiplication of the variables, and extend by linearity. For example,

2e1 ⊗ e2 + 3e2 ⊗ e1 − 7e3 ⊗ e2 −→ 5x1x2 − 7x2x3

thus identifying basis (elementary) tensors in V ⊗N that are equivalent under
any permutation.

This map induces a map on certain linear operators. Suppose A ∈ End(V )
is a linear transformation on V . This induces a linear transformation AN =
A⊗N ∈ End(V ⊗N ) defined on elementary tensors by:

AN (v ⊗ w ⊗ . . .) = A(v)⊗A(w)⊗ . . .

Similarly, a linear operator on the symmetric tensor spaces is induced so that
the following diagram commutes:

V ⊗N AN−−−−→ V ⊗N

symm

y symm

y
V ⊗sN AN−−−−→ V ⊗sN
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This can be understood by examining the action on polynomials. We call AN

the symmetric representation of A in degree N . Denote the matrix elements of
AN by Amn. If A has matrix entries Aij , let

yi =
∑

j

Aij xj

It is convenient to label variables with indices from 0 to δ = d − 1. Then the
matrix elements of the symmetric representation are defined by the expansion:

ym0
0 · · · ymδ

δ =
∑

n

Amn xn0
0 · · ·xnδ

δ

with multi-indices m and n homogeneous of degree N .

Mapping to the symmetric representation is an algebra homomorphism, i.e.,

AB = A B

Explicitly, in matrix notation, (AB)mn =
∑
r

(A)mr (B)rn .

Now we are ready to state our result

Proposition 3.1 For each N > 0, the symmetric representation of the N th

Sylvester-Hadamard matrix equals the transposed N th Krawtchouk matrix:

(HN )ij = K
(N)
ji .

Proof: Writing (x, y) for (x0, x1), we have in degree N for the kth compo-
nent:

(x + y)N−k(x− y)k =
∑

l

Hkl x
N−lyl

Substituting x = 1 yields the generating function (1.1) for the Krawtchouk ma-
trices with the coefficient of yl equal to K

(N)
lk . Thus the result.

Insight into these correspondences can be gained by splitting the fundamen-
tal Hadamard matrix H (= K(1)) into two special symmetric 2× 2 operators:

F =
[

0 1
1 0

]
, G =

[
1 0
0 −1

]
so that

H = F + G =
[

1 1
1 −1

]
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One can readily check that

F 2 = G2 = I

FH = HG and GH = HF (3.1)

The first of the second pair of equations may be viewed as the spectral decom-
position of F and we can interpret the Hadamard matrix as diagonalizing F
into G. Taking transposes gives the second equation of (3.1).

Now we proceed to the interpretation leading to a symmetric Bernoulli quan-
tum random walk ([12]). For this interpretation, the Hilbert space of states is
represented by the N th tensor power of the original 2-dimensional space V ,
that is, by the 2N -dimensional Hilbert space V ⊗N . Define the following linear
operator on V ⊗N :

XF = F ⊗ I ⊗ · · · ⊗ I

+I ⊗ F ⊗ I ⊗ · · · ⊗ I

+ . . .

+I ⊗ I ⊗ · · · ⊗ F

= f1 + f2 + . . . + fi + . . . + fN

each term describing a “flip” at the ith position (cf. [14, 22]). Analogously, we
define:

XG = G⊗ I ⊗ · · · ⊗ I

+I ⊗G⊗ I ⊗ · · · ⊗ I

+ . . .

+I ⊗ I ⊗ · · · ⊗G

= g1 + g2 + . . . + gi + . . . + gN

¿From equations (3.1) we see that our X-operators intertwine the Sylvester-
Hadamard matrices:

XF H(N) = H(N)XG and XGH(N) = H(N)XF

Since products are preserved in the process of passing to the symmetric tensor
space, we get

XF HN = HN XG and XG HN = HN XF (3.2)

the bars indicating the corresponding induced maps.

We have seen in Proposition 3.1 how to calculate HN from the action of H
on polynomials in degree N . For symmetric tensors we have the components in
degree N , namely xN−kyk, for 0 ≤ k ≤ N , where for convenience we write x
for x0 and y for x1. Now consider the generating function for the elementary
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symmetric functions in the quantum variables fj . This is the N -fold tensor
power

FN (t) = (I + tF )⊗N = I⊗N + t XF + · · ·
noting that the coefficient of t is XF . Similarly, define

GN (t) = (I + tG)⊗N = I⊗N + tXG + · · ·

From (I + tF )H = H(I + tG) we have

FNH(N) = H(N)GN and FN HN = HN GN

The difficulty is to calculate the action on the symmetric tensors for operators,
such as XF , that are not pure tensor powers. However, from FN (t) and GN (t)
we can recover XF and XG via

XF =
d

dt

∣∣∣∣
t=0

(I + tF )⊗N , XG =
d

dt

∣∣∣∣
t=0

(I + tG)⊗N

with corresponding relations for the barred operators. Calculating on polyno-
mials yields the desired results as follows.

I + tF =
[

1 t
t 1

]
, I + tG =

[
1 + t 0

0 1− t

]
In degree N , using x and y as variables, we get the kth component for XF and
XG via

d

dt

∣∣∣∣
t=0

(x + ty)N−k(tx + y)k = (N − k) xN−(k+1)yk+1 + k xN−(k−1)yk−1

and since I + tG is diagonal,

d

dt

∣∣∣∣
t=0

(1 + t)N−k(1− t)k xN−kyk = (N − 2k) xN−kyk .

For example, calculations for N = 4 result in

XF =


0 4 0 0 0
1 0 3 0 0
0 2 0 2 0
0 0 3 0 1
0 0 0 4 0

 (3.3)

XG =


4 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 −4

 (3.4)

H4 =


1 4 6 4 1
1 2 0 −2 −1
1 0 −2 0 1
1 −2 0 2 −1
1 −4 6 −4 1

 (3.5)
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Since XG is the result of diagonalizing XF , we observe that

Corollary 3.2 The spectrum of XF is N,N−2, . . . , 2−N,−N , coinciding with
the support of the classical random walk.

Remark on the shuffling map. Notice that the top row of (I + tF )⊗N is
exactly tw(k), where w(k) is the binary shuffling function of section §2. Each
time one tensors with I + tF , the original top row is reproduced, then concate-
nated with a replica of itself modified in that each entry picks up a factor of t
(compare with equation (2.1)). And, collapsing to the symmetric tensor space,
the top row will have entries

(
N
k

)
tk. This follows as well by direct calculation of

the 0th component matrix elements in degree N , namely by expanding (x+ty)N .

We continue with some areas where Krawtchouk polynomials/matrices play
a rôle, very often not explicitly recognized in the original contexts.

4 Ehrenfest urn model

In order to explain how the apparent irreversibility of the second law of thermo-
dynamics arises from reversible statistical physics, the Ehrenfests introduced a
so-called urn model, variations of which have been considered by many authors
([15, 16, 26]).

We have an urn with N balls. Each ball can be in two states represented by,
say, being lead or gold. At each time k ∈ N, a ball is drawn at random, changed
by a Midas-like touch into the opposite state (gold ↔ lead) and placed back in
the urn. The question is of course about the distribution of states — and this
leads to Krawtchouk matrices.

Represent the states of the model by vectors in Rn+1, namely by the state
of k gold balls by

vk = [ 0 0 · · · 1 · · · 0 ]>

↑
kth position

(4.1)

In the case of, say, N = 3, we have 4 states

0 gold balls

3 lead balls
=


1
0
0
0

 1 gold ball

2 lead balls
=


0
1
0
0

 . . .
3 gold balls

0 lead balls
=


0
0
0
1


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It is easy to see that the matrix of elementary state change in this case is
0 1

3 0 0
1 0 2

3 0
0 2

3 0 1
0 0 1

3 0

 =
1
3


0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0

 =
1
3

A(3) ,

and in general, we have the Kac matrix with off-diagonals in arithmetic pro-
gression 1, 2, 3, ... descending and ascending, respectively:

A(N) =



0 1 0 0 · · · 0 0
N 0 2 0 · · · 0 0

0 N − 1 0 3
... 0 0

0 0 N − 2 0
. . . 0 0

...
...

...
. . . . . . . . . 0

0 0 0 0
. . . 0 N

0 0 0 0 · · · 1 0


It turns out that the spectral properties of the Kac matrix involve Krawtchouk
matrices, namely, the collective solution to the eigenvalue problem Av = λv is

A(N)K(N) = K(N)Λ(N)

where Λ(N) is the (N +1)× (N +1) diagonal matrix with entries Λ(N)
ii = N −2i

Λ(N) =



N
N − 2 (∗)

N − 4
. . .

(∗) 2−N
−N


the (∗)’s denoting blocks of zeros.

To illustrate, for N = 3 we have
0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0




1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1

 =


1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


To see this in general, we note that, cf. equations (3.3–3.5), these are the

same operators appearing in the quantum random walk model, namely, we
discover that Λ(N) = XG, A(N) = X

>
F . Now, recalling K(N) = H

>
N , taking

transposes in equation (3.2) yields

A(N) K(N) = K(N) Λ(N) and K(N) A(N) = Λ(N) K(N)
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which is the spectral analysis of A(N) from both the left and the right. Thus, e.g.,
the columns of the Krawtchouk matrix are eigenvectors of the Ehrenfest model
with N balls where the kth column vk := (K· k) has corresponding eigenvalue
λk = (N − 2k)/N .

Remarks

1. Clearly, the Ehrenfest urn problem can be expressed in other terms. For
instance, it can be reformulated as a random walk on an N -dimensional
cube. Suppose an ant walks on the cube, choosing at random an edge
to progress to the next vertex. Represent the states by vectors in Z =
Z2 × · · · × Z2, N factors. The equivalence of the two problems comes via
the correspondence of states

Z 3 [ a1 a2 . . . aN ] −→ vw ∈ RN+1

where w =
∑

ai is the weight of the vector calculated in N, see (4.1).

2. The urn model in the appropriate limit as N → ∞ leads to a diffusion
model on the line, the discrete distributions converging to the diffusion
densities. See Kac’ article ([15]).

3. There is a rather unexpected connection of the urn model with finite-
dimensional representations of the Lie algebra sl(2) ∼= so(2, 1). Indeed,
introduce a new matrix by the commutator:

A =
1
2

[A,Λ]

The matrix A is a skew-symmetric version of A. For N = 3, it is

A =


0 −1 0 0
3 0 −2 0
0 2 0 −3
0 0 1 0


It turns out that the triple A, A and Λ is closed under commutation, thus
forms a Lie algebra, namely

span { A, A, Λ } ∼= so(2, 1) ∼= sl(2, R)

with commutation relations

[A,A] = 2Λ , [A,Λ] = 2A , [Λ, A] = −2A

5 Krawtchouk matrices and classical random walks

In this section we will give a probabilistic meaning to the Krawtchouk matrices
and illustrate some connections with classical random walks.

13



5.1 Bernoulli random walk

Let Xi be independent symmetric Bernoulli random variables taking values ±1.
Let xN = X1 + · · ·+ XN be the associated random walk starting from 0. Now
observe that the generating function of the elementary symmetric functions in
the Xi is a martingale, in fact a discrete exponential martingale:

MN =
N∏

i=1

(1 + vXi) =
∑

k

vkak(X1, . . . , XN )

where ak denotes the kth elementary symmetric function. The martingale prop-
erty is immediate since each Xi has mean 0. Refining the notation by set-
ting a

(N)
k to denote the kth elementary symmetric function in the variables

X1, . . . , XN , multiplying MN by 1 + vXN+1 yields the recurrence

a
(N+1)
k = a

(N)
k + a

(N)
k−1 XN+1

which, with the boundary conditions a
(0)
k = 0, for k > 0, a

(n)
0 = 1 for all n ≥ 0,

yields, for k > 0,

a
(N+1)
k =

N∑
j=0

a
(j)
k−1 Xj+1

that is, these are discrete or prototypical iterated stochastic integrals and thus
the simplest example of Wiener’s homogeneous chaoses.

Suppose that at time N , the number of the Xi that are equal to −1 is jN ,
with the rest equal to +1. Then jN = (N − xN )/2 and MN can be expressed
solely in terms of N and xN , or, equivalently, of N and jN

MN = (1 + v)N−jN (1− v)jN = (1 + v)(N+xN )/2(1− v)(N−xN )/2

¿From the generating function for the Krawtchouk matrices, equation (1.1),
follows

MN =
∑

i

viK
(N)
i,jN

so that as functions on the Bernoulli space, each sequence of random variables
K

(N)
i,jN

is a martingale.

Now we can derive two basic recurrences. From a given column of K(N), to
get the corresponding column in K(N+1), we have the Pascal’s triangle recur-
rence:

K
(N)
i−1 j + K

(N)
i j = K

(N+1)
i j

This follows in the probabilistic setting by writing MN+1 = (1 + vXN )MN and
remarking that for j to remain constant, XN must take the value +1. The
martingale property is more interesting in the present context. We have

K
(N)
i jN

= E(K(N)
i jN+1

|X1, . . . , XN ) =
1
2

(
K

(N+1)
i jN+1 + K

(N+1)
i jN

)
14



since half the time XN+1 is −1, increasing jN by 1, and half the time jN is
unchanged. Thus, writing j for jN ,

K
(N)
ij =

1
2

(
K

(N+1)
i j+1 + K

(N+1)
ij

)
which may be considered as a ‘reverse Pascal’.

5.1.1 Orthogonality

As noted above — here with a slightly simplified notation — it is natural to
use variables (x,N), with x denoting the position of the random walk after N
steps. Writing Kα(x, N) for the Krawtchouk polynomials in these variables, cf.
equation (1.2), we have the generating function

G(v) =
N∑

α=0

vαKα(x,N) = (1 + v)(N+x)/2(1− v)(N−x)/2

The expansion

(1− v)y−a(1− (1−R)v)−y =
∞∑

n=0

vn

n!
(a)n 2F1

(
−n, y

a

∣∣∣∣ R

)
(5.1)

with (a)n = Γ(a+n)/Γ(a), yields the identification as hypergeometric functions

Kα(x,N) =
(

N

α

)
2F1

(
−α, (x−N)/2

−N

∣∣∣∣ 2
)

The calculation

〈G(v)G(w)〉 =
∏

〈1 + (v + w)Xj + vwX2
j 〉 = (1 + vw)N

exhibits the orthogonality of the Kα if one observes that after taking expecta-
tions only terms in the product vw remain. Thus, the Kα are notable for two
important features:

1. They are the iterated integrals (sums) of the Bernoulli process.

2. They are orthogonal polynomials with respect to the binomial distribution.

5.2 Multivariate Krawtchouk polynomials

The probabilistic approach may be carried out for general finite probability
spaces. Fix an integer d > 0 and d values {ξ0, . . . , ξδ}, with the convention
δ = d− 1. Take a sequence of independent identically distributed random vari-
ables having distribution P (X = ξj) = pj , 0 ≤ j ≤ δ. Denote the mean and

15



variance of the Xi by µ and σ2 as usual.

For N > 0, we have the martingale

MN =
N∏

j=1

(1 + v(Xj − µ))

We now switch to the multiplicities as variables. Set

nj =
N∑

k=1

1{Xk=ξj}

the number of times the value ξj is taken. Thus the generating function

G(v) =
δ∏

j=0

(1 + v(ξj − µ))nj =
N∑

α=0

vαKα(n0, . . . , nδ)

defines our generalized Krawtchouk polynomials. One quickly gets

Proposition 5.1 Denoting the multi-index n = (n0, . . . , nδ) and by ej the stan-
dard basis on Zd, Krawtchouk polynomials satisfy the recurrence

Kα(n + ej) = Kα(n) + (ξj − µ)Kα−1(n)

We also find by binomial expansion

Proposition 5.2

Kα(n0, . . . , nδ) =
∑
|k|=α

∏
j

(
nj

kj

)
(ξj − µ)kj

where |k| =
δ∑

j=0

kj.

There is an interesting connection with the multivariate hypergeometric
functions of Appell and Lauricella. The Lauricella polynomials FB are defined
by

FB

(
−r,b

t

∣∣∣∣ s
)

=
∑
k∈Nδ

(−r)k(b)k
(t)|k|k!

sk

with, e.g., r = (r1, . . . , rδ), (r)k = (r1)k1(r2)k2 · · · (rδ)kδ
for multi-index k, also

sk = sk1
1 · · · skδ

δ , andk! = k1! · · · kδ! . Note that t is a single variable. The
generating function of interest here is

(1−
∑

vi)
P

bj−t
∏
j

(1−
∑

vi + sjvj)−bj =
∑
r∈Nδ

vr(t)|r|
r!

FB

(
−r,b

t

∣∣∣∣ s
)
(5.2)

a multivariate version of (5.1).
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Proposition 5.3 Let N = |n|. If ξ0 = 0, then,

Kα(n) = (−N)α

∑
|r|=α

∏
(pjξj)rj

r!
FB

(
−r,−n
−N

∣∣∣∣ 1
p1

, . . . ,
1
pδ

)

Proof Let vj = vpjξj , bj = −nj , t = −N, sj = p−1
j in (5.2), for 1 ≤ j ≤ δ.

Note that
∑

vj = vµ,
∑

bj − t = N − (
∑

1≤j≤δ

nj) = n0.

Orthogonality follows similar to the binomial case:

Proposition 5.4 The Krawtchouk polynomials Kα(n0, . . . , nδ) are orthogonal
with respect to the induced multinomial distribution. In fact,
with N = |n|,

〈KαKβ〉 = δαβ σ2α

(
N

α

)
Proof

〈G(v)G(w)〉 =
∑ (

N

n0, . . . , nδ

)
pn0
0 · · · pnδ

δ

∏(
1 + (v + w)(ξj − µ) + vw(ξj − µ)2

)nj

=
(∑ (

pj + (v + w)pj(ξj − µ) + vwpj(ξj − µ)2
))N

Thus, 〈G(v) G(w)〉 = (1 + vwσ2)N . This shows orthogonality and yields the
squared norms as well.

6 “Kravchukiana” or the World of Krawtchouk
Polynomials

About the year 1995, we held a seminar on Krawtchouk polynomials at South-
ern Illinois University. As we continued, we found more and more properties
and connections with various areas of mathematics.

Eventually, by the year 2000 the theory of quantum computing had been
developing with serious interest in the possibility of implementation, at the
present time of MUCH interest. Sure enough, right in the middle of everything
there are our flip operators, su(2), etc., etc. — same ingredients making up the
Krawtchouk universe. Well, we can only report that how this all fits together
is still quite open. Of special note is the idea of a hardware implementation of
a Krawtchouk transform. A beginning in this direction may be found in the
just-published article with Schott, Botros, and Yang [3].

At any rate, for the present we list below the topics which are central to
our program. They are the basis of the Krawtchouk Encyclopedia, still in
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development; we are in the process of filling in the blanks. An extensive web
resource for Krawtchouk polynomials we recommend is Zelenkov’s site:

http://www.geocities.com/orthpol/

Note that we do not mention work in areas less familiar to us, notably that
relating to q-Krawtchouk polynomials, such as in [23].

We welcome contributions. If you wish either to send a reference to your
paper(s) on Krawtchouk polynomials or contribute an article, please contact one
of us !

Our email: pfeinsil@math.siu.edu or jkocik@math.siu.edu.

6.1 Krawtchouk Encyclopedia

Here is a list of topics currently in the Krawtchouk Encyclopedia.

1. Pascal’s Triangle

2. Random Walks

• Path integrals

• A, K, and Λ

• Nonsymmetric Walks

• Symmetric Krawtchouk matrices and binomial expectations

3. Urn Model

• Markov chains

• Initial and invariant distributions

4. Symmetric Functions. Energy

• Elementary symmetric functions and determinants

• Traces on Grassman algebras

5. Martingales

• Iterated integrals

• Orthogonal functionals

• Krawtchouk polynomials and multinomial distribution

6. Lie algebras and Krawtchouk polynomials
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• so(2,1) explained

• so(2,1) spinors

• Quaternions and Clifford algebras

• S and so(2,1) tensors

• Three-dimensional simple Lie algebras

7. Lie Groups. Reflections

• Reflections

• Krawtchouk matrices as group elements

8. Representations

• Splitting formula

• Hilbert space structure

9. Quantum Probability and Tensor Algebra

• Flip operator and quantum random walk

• Krawtchouk matrices as eigenvectors

• Trace formulas. MacMahon’s Theorem

• Chebyshev polynomials

10. Heisenberg Algebra

• Representations of the Heisenberg algebra

• Raising and velocity operator. Number operator

• Evolution structure. Hamiltonian.

• Time-zero polynomials

11. Central Limit Theorem

• Hermite polynomials

• Discrete stochastic differential equations

12. Clebsch-Gordan Coefficients

• Clebsch-Gordan coefficients and Krawtchouk polynomials

• Racah coefficients

13. Orthogonal Polynomials

• Three-term recurrence in terms of A, K, Lambda

• Nonsymmetric case
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14. Krawtchouk Transforms

• Orthogonal transformation associated to K

• Exponential function in Krawtchouk basis

• Krawtchouk transform

15. Hypergeometric Functions

• Krawtchouk polynomials as hypergeometric functions

• Addition formulas

16. Symmetric Krawtchouk Matrices

• The matrix T

• S-squared and trace formulas

• Spectrum of S

17. Gaussian Quadrature

• Zeros of Krawtchouk polynomials

• Gaussian-Krawtchouk summation

18. Coding Theory

• MacWilliams’ theorem

• Association schemes

19. Appendices

• K and S matrices for N from 1 to 14

• Krawtchouk polynomials in the variables x,N/i,j/j,N for N from 1 to
20

• Eigenvalues of S

• Remarks on the multivariate case

• Time-zero polynomials

• Mikhail Philippovitch Krawtchouk: a biographical sketch



7 Appendix

7.1 Krawtchouk matrices

K(0) =
[

1
]

K(1) =
[

1 1
1 −1

]

K(2) =

 1 1 1
2 0 −2
1 −1 1



K(3) =


1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1



K(4) =


1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1



K(5) =


1 1 1 1 1 1
5 3 1 −1 −3 −5

10 2 −2 −2 2 10
10 −2 −2 2 2 −10
5 −3 1 1 −3 5
1 −1 1 −1 1 −1



K(6) =



1 1 1 1 1 1 1
6 4 2 0 −2 −4 −6

15 5 −1 −3 −1 5 15
20 0 −4 0 4 0 −20
15 −5 −1 3 −1 −5 15
6 −4 2 0 −2 4 −6
1 −1 1 −1 1 −1 1


Table 1



7.2 Symmetric Krawtchouk matrices

S(0) =
[

1
]

S(1) =
[

1 1
1 −1

]

S(2) =

 1 2 1
2 0 −2
1 −2 1



S(3) =


1 3 3 1
3 3 −3 −3
3 −3 −3 3
1 −3 3 −1



S(4) =


1 4 6 4 1
4 8 0 −8 −4
6 0 −12 0 6
4 −8 0 8 −4
1 −4 6 −4 1



S(5) =


1 5 10 10 5 1
5 15 10 −10 −15 −5

10 10 −20 −20 10 10
10 −10 −20 20 10 −10
5 −15 10 10 −15 5
1 −5 10 −10 5 −1



S(6) =



1 6 15 20 15 6 1
6 24 30 0 −30 −24 −6

15 30 −15 −60 −15 30 15
20 0 −60 0 60 0 −20
15 −30 −15 60 −15 −30 15
6 −24 30 0 −30 24 −6
1 −6 15 −20 15 −6 1


Table 2



7.3 Sylvester-Hadamard matrices

H(0) =
[
•

]
H(1) =

[
• •
• ◦

]

H(3) =


• • • •
• ◦ • ◦
• • ◦ ◦
• ◦ ◦ •



H(4) =



• • • • • • • •
• ◦ • ◦ • ◦ • ◦
• • ◦ ◦ • • ◦ ◦
• ◦ ◦ • • ◦ ◦ •
• • • • ◦ ◦ ◦ ◦
• ◦ • ◦ ◦ • ◦ •
• • ◦ ◦ ◦ ◦ • •
• ◦ ◦ • ◦ • • ◦



H(5) =



• • • • • • • • • • • • • • • •
• ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦
• • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦
• ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ •
• • • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦
• ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ •
• • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ • •
• ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • • ◦
• • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• ◦ • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦ •
• • ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ • •
• ◦ ◦ • • ◦ ◦ • ◦ • • ◦ ◦ • • ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• ◦ • ◦ ◦ • ◦ • ◦ • ◦ • • ◦ • ◦
• • ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • ◦ ◦
• ◦ ◦ • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ •


Table 3

Replace • with 1 and ◦ with −1 to obtain Sylvester-Hadamard matrices.
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